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ABSTRACT

We present observational evidence of compressible MHD wave modes propagating from the solar photosphere
through to the base of the transition region in a solar magnetic pore. High cadence images were obtained
simultaneously across four wavelength bands using the Dunn Solar Telescope. Employing Fourier and wavelet
techniques, sausage-mode oscillations displaying significant power were detected in both intensity and area
fluctuations. The intensity and area fluctuations exhibit a range of periods from 181 to 412 s, with an average
period ∼290 s, consistent with the global p-mode spectrum. Intensity and area oscillations present in adjacent
bandpasses were found to be out of phase with one another, displaying phase angles of 6◦. 12, 5◦. 82, and 15◦. 97
between the 4170 Å continuum–G-band, G-band–Na ID1, and Na ID1–Ca IIK heights, respectively, reiterating the
presence of upwardly propagating sausage-mode waves. A phase relationship of ∼0° between same-bandpass
emission and area perturbations of the pore best categorizes the waves as belonging to the “slow” regime of a
dispersion diagram. Theoretical calculations reveal that the waves are surface modes, with initial photospheric
energies in excess of 35,000Wm−2. The wave energetics indicate a substantial decrease in energy with
atmospheric height, confirming that magnetic pores are able to transport waves that exhibit appreciable energy
damping, which may release considerable energy into the local chromospheric plasma.
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1. INTRODUCTION

An explanation of how the solar corona exhibits extra-
ordinary temperatures exceeding 1MK remains a key goal of
solar research (Erdélyi 2004; Klimchuk 2006; Taroyan &
Erdélyi 2009). Of greater importance is how chromospheric
plasma can maintain temperatures of up to 10,000 K, since
heating this region demands an even greater energy input to
balance the extreme radiative losses (Withbroe & Noyes 1977).
Atmospheric waves have long been proposed as the mechanism
by which energy is transported from the solar surface to the
upper atmosphere in order to sustain its heightened tempera-
tures (Schwarzschild 1948). The first verifiable evidence for
oscillations in the solar atmosphere was documented by
Leighton (1960), and in the years since this discovery,
observations of global and localized wave activity have
become more definitive as a result of much improved
instrumentation and processing techniques (see, e.g., the recent
reviews by Banerjee et al. 2007; Mathioudakis et al. 2013; Jess
et al. 2015). Alongside these observational improvements, our
understanding of solar oscillations has increased through
theoretical developments in the field of MHD (e.g.,
Roberts 2000; Nakariakov & Verwichte 2005; Erdélyi 2008).
From this, the nature of the Sunʼs atmosphere can be simplified
as a region of magnetized plasma that can be manipulated
through a number of physical mechanisms, including the
ubiquitous convective flows present in the photosphere. MHD
theory allows for an understanding of multiple wave modes in

structured media, including sausage and kink modes, generated
in the magnetically active regions of the solar atmosphere. The
study of these waves in terms of their energetics and
propagation through the solar plasma is vital in assessing the
role oscillations play in atmospheric heating, given that the
omnipresent solar acoustic (i.e., non-magnetic) waves have
demonstrated insufficient energies to be the sole means of
chromospheric heating (Fossum & Carlsson 2005; Bello
González et al. 2010).
The various MHD wave modes that have been observed

throughout the solar atmosphere can largely be categorized in
terms of their compressibility. Weakly compressible MHD
waves are distinguished by their inability to cause significant
density perturbations within the plasma. Such modes identified
thus far are the kink wave, which has been identified both in the
chromosphere (e.g., Kukhianidze et al. 2006; Zaqarashvili
et al. 2007) and the corona (e.g., Aschwanden et al. 1999;
Nakariakov et al. 1999; Erdélyi & Taroyan 2008, p. 61; van
Doorsselaere et al. 2008, to name but a few), alongside the
more elusive and completely incompressible torsional Alfvén
wave (Jess et al. 2009). A consequence of the nearly
incompressible nature of kink waves is their resistance to
energy dissipation unless large Alfvén speed gradients exist to
help induce phase mixing (Heyvaerts & Priest 1983), or
provide mode conversion due to resonant coupling (Sakurai
et al. 1991), making them the widespread focus of recent
coronal heating studies. However, one drawback is that the

The Astrophysical Journal, 806:132 (14pp), 2015 June 10 doi:10.1088/0004-637X/806/1/132
© 2015. The American Astronomical Society. All rights reserved.

1

mailto:sgrant19@qub.ac.uk
http://dx.doi.org/10.1088/0004-637X/806/1/132


proposed dissipation mechanisms for such waves exist on
spatial scales below current observational resolution limits. As
a result, there has only been tentative observational signatures
of fast kink mode wave damping in the chromosphere (He
et al. 2009; Kuridze et al. 2013; Morton 2014), though the
mechanism remains largely undetermined and it is uncertain
whether these waves contribute directly to chromospheric
heating.

Compressible wave modes are defined observationally by
their ability to perturb the local plasma density. The greater
capacity for mechanisms to extract energy from these waves,
when compared to incompressible oscillations, continues to
highlight their potential importance in providing heat energy to
the outer solar atmosphere. The most observed compressible
modes are the magneto-acoustic oscillations found in highly
magnetic regions, such as sunspots, pores, and magnetic bright
points. Inclined magnetic fields allow global solar acoustic
waves to propagate farther into the atmosphere due to a
weakened net gravitational force (Bel & Leroy 1977).
Magneto-acoustic waves are thought to be associated with
other observed oscillations in the solar atmosphere. For
example, running penumbral waves are observed to propagate
outwards along the penumbral magnetic fields surrounding
sunspots (e.g., Zirin & Stein 1972). They are thought to be the
chromospheric manifestation of photospheric magneto-acoustic
waves as they propagate upwards (Bloomfield et al. 2007; Jess
et al. 2013), and have been shown to propagate upwards from
the chromosphere with sufficient energy flux to contribute to
the localized heating of coronal plasma (Freij et al. 2014).
Compressible waves, in particular, are desirable wave modes
given that many forms of energy dissipation have been
identified, including resonant absorption (Goossens & De
Groof 2001), turbulent mixing (van Ballegooijen et al. 2011),
viscosity (Braginskii 1965), mode conversion (Ulmschneider
et al. 1991), and thermal conduction (Ofman &
Aschwanden 2002).

Compressible MHD sausage modes are also of interest to the
chromospheric/coronal heating debate. These waves are
typically identified by periodic fluctuations in the intensity
and/or area of magnetic structures such as pores, spicules or
coronal loops (Edwin & Roberts 1983). Given the high spatial
resolution required to observe such fractional changes in area,
early studies of sausage mode waves were limited to larger-
scale coronal loops (e.g., Aschwanden et al. 2004), and it was
only in recent years before the first lower atmospheric detection
of sausage mode waves in whitelight images of pores was
uncovered (Dorotovič et al. 2008). As observing instrumenta-
tion has developed in capability, the ability to study sausage
mode properties at high spatial and temporal resolutions has
been evident. Morton et al. (2011) provided the first in-depth
study of sausage modes in photospheric pores. The identified
area oscillations often did not have simultaneous intensity
changes, indicating these waves did not possess large-
amplitude wave power provided there was no twist in the
magnetic field. However, these waves were ascertained to be
fast mode waves (Moreels et al. 2013) and their observed
periods indicated that they may be driven by the global p-mode
oscillations, in contrast to the waves observed by Dorotovič
et al. (2008), whose longer periods were postulated as evidence
of the presence of a magneto-acoustic gravity mode. Further
photospheric analysis was conducted by Dorotovič et al.
(2014), where the investigation of separate pore and sunspot

features identified the presence of both fast and slow sausage
mode waves. These results showed that sausage modes form at
the solar surface in a variety of different configurations, and
have also been seen in fluctuations of spectro-polarimetric data
(Fujimura & Tsuneta 2009), indicating a range of methods for
photospheric detection and analysis. As the study of these
waves at photospheric heights has developed, chromospheric
detections initially appeared to be more elusive. However, the
work of Morton et al. (2012) showed that sausage mode waves
were in fact ubiquitous in fine-scale chromospheric magnetic
structures, such as fibrils and mottles. These waves contained
energy flux on the order of 11,000Wm−2 and exhibited
characteristics of leaky modes, suggesting that they were
readily able to dissipate energy to the surrounding plasma.
Given that the identified sausage-mode energy flux was greater
than that of the simultaneous kink modes also found in these
structures, the work was important in validating their potential
for energy transportation to the upper regions of the solar
atmosphere (e.g., Jess et al. 2012a; Moreels et al. 2015a).
However, what remains to be verified is a link between the
photospheric and chromospheric observations of sausage
modes, showing that the waves generated at the solar surface
are indeed propagating to higher atmospheric heights.
Magnetic pores are the visible signature of concentrated

magnetic fields that prohibit surface convection over a large
volume. They are the smaller counterparts to sunspots, with
diameters between 1 and 6Mm, and weaker magnetic field
strengths up to ∼1700 G (Sobotka 2003). There is an
associated drop in the measured intensity, with the mean
values of a pore being on the order of 40% lower than the
quiescent solar surface (Verma & Denker 2014). Given their
lack of penumbra, pores have often been considered (and
modeled) as a simple single magnetic flux tube (Simon &
Weiss 1970; Hurlburt & Rucklidge 2000). However, observa-
tions of bright structures within pores, such as umbral dots
(Sobotka et al. 1999), could be an indication that pores may
exhibit a more dynamic magnetic configuration, such as that
described by Parker (1979). Their relatively small size has
previously made detailed observations and analyses difficult,
but with the advent of high resolution imaging instruments,
they are now within scientific scope. This is advantageous since
their small size leads to lessened internal forces when
compared to sunspots, thus they are likely to be more dynamic
and respond to bulk external forces more readily.
Here, we present observations of upwardly propagating slow

sausage mode waves in a solar magnetic pore using high
resolution imaging and spectral imaging from the Dunn Solar
Telescope (DST). We also provide the first intensive analyses
of sausage mode energies with atmospheric height, from their
formation in the photosphere through to high chromospheric
locations.

2. OBSERVATIONS AND DATA PROCESSING

The data presented here is an observational sequence
obtained during 19:27–20:02 UT on 2013 March 6 with the
DST at Sacramento Peak, New Mexico. The telescope was
focussed on the active region NOAA 11683, positioned at
heliocentric co-ordinates (113″, −170″), or S17.3W07.0 in the
conventional heliographic co-ordinate system, with seeing
conditions remaining very good throughout the entire
35 minutes observing run. The Rapid Oscillations in the Solar
Atmosphere (ROSA; Jess et al. 2010) camera system was used
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to image a 115″ × 115″ portion of the solar disk through
continuum (4170; 52 Å FWHM), G-band (4305.5; 9.2 Å
FWHM), and Na ID1 core (5895.9; 0.17 Å FWHM) filters,
each at a spatial sampling of 0″.12 pixel−1. A Ca IIK core
(3933.7; 1.0 Å FWHM) filter was also used in conjunction with
a new camera addition to the DSTʼs imaging suite. The
California State University Northridge camera (CSUNcam) is
an iXon X3 DU-897-EX9 model manufactured by Andor
Technology, boasting a back-illuminated, 512 × 512 pixel2

electron-multiplying CCD. The detector, triggering, and read-
out architectures are identical to that of the existing Hydrogen-
alpha Rapid Dynamics camera (HARDcam; Jess et al. 2012c),
but incorporates an additional window coating designed to
improve sensitivity in the blue portion of the optical spectrum,
helping quantum efficiencies exceed 70% at 4000 Å. To ensure
the solar coverage of CSUNcam was similar to that of ROSA, a
plate scale of 0 ″. 230 pixel−1 was chosen to provide a
118″ × 118″ field of view.

In addition to ROSA and CSUNcam observations, the
Interferometric BIdimensional Spectrometer (IBIS; Caval-
lini 2006) was used to simultaneously sample the Ca II

absorption profile at 8542.12 Å with a spatial sampling of
0 ″. 097 pixel−1. IBIS employed 11 discreet wavelength steps,
each with 10 exposures per wavelength to assist with image
reconstruction, providing a complete scan cadence of 17.673 s.
A white-light camera, synchronized with the IBIS feed, was
used to enable the processing and destretching of all
narrowband images.

To improve the clarity of the images, techniques of high-
order adaptive optics (Rimmele 2004), speckle reconstruction
(Wöger et al. 2008) and Fourier co-alignment (Jess et al. 2007)
were employed. Utilizing 64 1 speckle restorations, the
resulting cadences for continuum, G-band, Na ID1, and Ca IIK
image sequences were 2.11, 2.11, 4.22, and 2.33 s, respec-
tively. The IBIS images were processed with a 10 1
restoration, and a blueshift correction was applied to account
for the use of classical etalon mountings (Cauzzi et al. 2008).
The Na ID1 and Ca IIK image sequences were then interpolated
on to a constant 2.11 s time grid to allow for easy comparisons
between bandpasses, with the Ca IIK images also spatially
resampled to replicate the plate scale of the ROSA cameras.
The end result is spatially and temporally coaligned image
sequences spanning the full 35 minutes duration of the data set.

The Helioseismic and Magnetic Imager (HMI; Schou
et al. 2012) onboard the Solar Dynamics Observatory (SDO;
Pesnell et al. 2012) was utilized to provide simultaneous vector
magnetograms of active region NOAA 11683, in addition to
contextual HMI continuum images for the purposes of co-
aligning to the ground-based data sets. The Milne–Eddington
vector magnetograms were obtained with a 2 pixel spatial
resolution of 1″. 0 and a cadence of 720 s. The HMI data were
processed using the standard hmi_prep IDL routine, which
includes the removal of energetic particle hits. Next,
200″ × 200″ sub-fields were extracted from the processed
images, with a central pointing approximately equal to that of
the ground-based data. Using the HMI continuum image to
define absolute solar co-ordinates, the ROSA and CSUNcam
observations were subjected to Fourier-based cross-correlation
techniques to provide sub-pixel inter-bandpass co-alignment.
To do this, the plate scales of the ROSA and CSUNcam

observations were first degraded to match that of the HMI
continuum image.10 Then, calculations of squared mean
absolute deviations were performed between the data sets,
with the ground-based images shifted to best align with the
HMI reference image. Following the implementation of co-
alignment techniques, the maximum x- and y-displacements
were both less than one-tenth of an HMI pixel, or 0 ″. 05
(≈36 km). Sample ROSA, CSUNcam and HMI images are
displayed in Figure 1.

3. ANALYSIS AND DISCUSSION

Within our field of view there was a pronounced pore
structure, as highlighted by the solid white boxes in Figure 1,
that lasted for the full duration of the data set. The pore was a
well-defined dark discontinuity from the surrounding plasma.
Thus, to isolate the pore for further study, we employed
intensity thresholding techniques allowing the perimeter of the
pore to be defined in relation to a decrease below the mean
quiescent intensity. A quiet region, free from magnetic
structures such as plage and bright points, was used to
calculate the background mean intensity, Iave, and the resulting
standard deviation, σ. Next, the pore was defined in each
bandpass as pixels displaying intensity values less than
( s-I Nave ), where N is equal to 2.2, 2.2, 2.2, and 2.1 for
the 4170 Å continuum, G-band, Na ID1, and Ca IIK band-
passes, respectively. While the value of N may differ between
adjacent bandpasses as a result of variable height-localized
contrast ratios, once defined it remained fixed for each
bandpass over the entire duration of the time series to ensure
consistency when measuring time-dependent variables.
By employing the intensity threshold values, pore time series

for each bandpass were generated by isolating those pixels
which lay at or below the specific threshold value. This created
a 988 (35 minutes duration with a 2.11 s cadence) image
sequence for each bandpass with all solar structures except for
the pore masked out. Then, the pore areas were time-averaged
in each bandpass to establish the mean pore coverage at
individual atmospheric heights. The time-averaged area of the
pore defined by the intensity thresholds corresponded to 7.02 ±
0.11, 7.18 ± 0.11, 7.99 ± 0.13, and 8.12 ± 0.19Mm2 for the
4170 Å continuum, G-band, Na ID1, and Ca IIK bandpasses,
respectively, indicating that the pore presented here expands
minimally with height (∼15% area change between continuum
and Ca IIK layers). This expansion with height is expected due
to the decrease in plasma pressure, although the fractional
change in area is smaller than typically expected (e.g., Solanki
et al. 1999). This may be a direct consequence of the strong
magnetic fields present in the region of the pore at photospheric
heights (left column of Figure 1), which prevent rapid
expansion as it extends upwards from the continuum level, or
an unresolved twist in the field lines that would result in
reduced expansion. With the pore perimeter well defined in
each bandpass, it became possible to investigate and compare
propagating and height-localized fluctuations in intensity and
area, as will be discussed in the following subsections.

3.1. Oscillations in the Pore Intensity

To investigate whether the pore structure contained standing
and/or propagating magneto-acoustic wave trains we studied

9 Full specifications available at http://www.andor.com.

10 Data analysis was performed on full-resolution (i.e., non-degraded) image
sequences.
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co-spatial intensity fluctuations between adjacent bandpasses
using the wavelet analysis techniques described by Jess et al.
(2012b), and first introduced by Torrence & Compo (1998).
First, however, it was important to isolate pixels that remained

part of the pore structure at all points in time and height. Only
with these pixels determined can wavetrains that propagate
through all available bandpasses be identified and statistically
studied. Given that the 4170 Å continuum channel represented

Figure 1. The left column consists of co-spatial images of the full ROSA/CSUNcam field of view, stacked from the photosphere through to the chromosphere. From
bottom to top, the images represent the vertical magnetic field strength, Bz, determined from HMI vector magnetograms with the scale saturated at ±1000 G to aid
clarity, magnetic field inclination angles, where 0° and 180° represent fields outwardly and inwardly normal to the solar surface, ROSA 4170 Å continuum, G-band,
Na I D1 and Ca II K images. A white dashed line interconnects the pore between bandpasses, while the solid boxes define the sub-fields displayed in the right-hand
column. Here, the pore is shown in detail for each imaging bandpass, with the binary map pixels shown at each height using a red contour.
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the smallest spatial coverage of the pore, it was used to
determine which pixels are continually contained within the
pore boundaries. The binary map was formed by co-adding all
4170 Å continuum pore perimeter maps, where values of “1”
indicated part of the pore structure and values of “0”
represented external non-pore areas, normalizing by the image
count (988), then setting all pixels with normalized intensities
<1 to 0. Thus, only pixels that are contained within the pore
perimeter for all steps in time are assigned a value of “1” in the
final binary map, as indicated by the red contours in the right-
hand panels of Figure 1. The pixels contained within the
4170 Å continuum binary map were then compared to the time
series for other bandpasses to verify their omnipresence
throughout time and atmospheric height. The completed binary
map contained 206 non-zero pixels, and each pore image
sequence was subsequently multiplied by the binary map to
form a data set that could be compared directly between all
atmospheric heights and time steps.

Intensity time series for the 4170 Å continuum and G-band
data sets were extracted for those pixels which lay within the
confines of the binary map. The time series were then
detrended by a first-order polynomial to remove long term
variations in intensity and/or light levels, and normalized to
their subsequent mean. Wavelet analysis techniques were
applied to the time series to identify the presence of periodic
signals. Strong oscillatory power was detected in both
bandpasses, with periodicities predominantly in the range of
3–5 minutes, which overlap well with the typical solar p-mode
spectrum (Lites et al. 1982). Next, the phase difference
analysis techniques detailed by Jess et al. (2012b) were
employed to investigate whether the oscillations were detect-
able co-spatially in the neighboring bandpasses, and whether
there was an inherent phase shift. Here, a positive phase angle
indicates that a wave is first observed at a lower atmospheric
height (i.e., the wave is propagating upwards from the 4170 Å
continuum to the G-band), with criteria defined to ensure
confidence in the final results. First, only waves that exhibited a
cross-correlation coefficient greater than 50% between the
bandpasses were considered in an attempt to ensure the
oscillatory signature corresponded to the same wave. Second,
only waves which displayed a lifetime greater than 2 P in
each bandpass were included, where P is the period of the
oscillation in seconds, to ensure these signatures are periodic
rather than lone spikes in the time series. These rigorous criteria
were implemented on each extracted time series, with
approximately 1700 suitable periodicities identified in the
period range 210–412 s, with a mean value of 290 ± 31 s. The
derived individual phase angles between these detected
oscillations were collected into a histogram employing 1° bins
(as detailed in Figure 2). A best-fit Gaussian was applied, with
the centroided value identifying the most commonly occurring
phase angle. In the case of 4170 Å continuum–G-band, the
dominant angle found was ≈6.12 ± 4◦. 6, indicating upward
propagation between the formation heights of the 4170 Å
continuum and G-band filtergrams. Subsequently, the same
methodology was applied to the G-band–Na ID1 and Na ID1–

Ca IIK time series. In the case of G-band–Na ID1, periodicities
in the range of 210–412 s were identified (similar to that of the
4170 Å continuum–G-band), with a prominent phase angle of
≈ 5.82 ± 3◦. 62. The Na ID1–Ca IIK output displayed a small
decrease in the range of detected periodicities, with periods in
the range of 181–362 s being found to display a dominant

phase angle≈15.97±8◦. 73. The upper panel of Figure 2
displays a Fourier transform of Ca IIK intensities synonymous
with all pixels contained within the pore structure, here
demonstrating significant power at periodicities in the range
of 200–300 s. These relationships indicate the prevalence of
upwardly propagating waves within the pore.
From inspection of Figure 2, the majority of the derived

phase angles are positive, with 75% of pixels showing a
positive phase between 4170 Å continuum–G-band, 70%
between G-band–Na ID1, and 78% between Na ID1–Ca IIK.
The percentage of upwardly propagating waves determined
here compares well with the work of Jess et al. (2012b), which
ascertained that 73% of waves propagating between the 4170 Å
continuum and G-band channels within kilo-Gauss magnetic
elements were directed upwards. The existence of downwardly
propagating waves is to be expected, and ultimately may be a
consequence of reflections occurring at the chromospheric and
transition region boundaries. In addition, the formation heights
of the Na ID1 and Ca IIK filtergrams are difficult to quantify,
with contribution functions being comprised of emission
generated over a range of heights and opacities. As such, the
phase angles calculated between these bands will have an
intrinsic degree of scatter as a result of non-fixed formations
heights and varying opacities in the vicinity of the highly
magnetic pore. However, even with such effects, each inter-
bandpass jump still demonstrates in excess of 70% upwardly
propagating wave signatures.
The phase speed of the waves can be estimated by

combining the observed phase angle alongside the formation
heights of the 4170 Å continuum and G-band bandpasses
derived by Jess et al. (2012b). While the average separation
between formation heights was found to be ∼75 km, structures
residing within more magnetic environments (such as inter-
granular lanes and magnetic bright points), were found to
display larger separation heights on the order of ∼100 km.
While more difficult to constrain, the formation heights of the
Na ID1 and Ca IIK filtergrams can be estimated as ∼400 km
(Simoniello et al. 2008) and ∼800 km (Beebe & John-
son 1969), respectively. Employing our periodicity and phase
delay measurements from the 4170 Å continuum to G-band,
along with the traversed distance extracted from Jess et al.
(2012b), enables us to calculate the resulting phase velocities
of the observed waves. Assuming the prominent phase angle of
6◦. 12, found between the 4170 Å continuum and G-band
filtergrams, represents the phase velocity of the waves with a
mean period of 290 s, the wave travel time can then be
calculated as 6◦. 12/360° × 290 s = 4.92 s. Thus, an average
propagation distance of ∼75 km leads to an estimated wave
speed of ∼15 km s−1. At first glance, this value is in excess of
what is expected for an isolated wave propagating in the solar
photosphere (Edwin & Roberts 1983). However, investigation
of the line of sight (LOS) Doppler and bi-sector velocities
obtained with IBIS revealed a large bulk upflow within the
confines of the pore. Figure 3 displays the spatially averaged
Doppler and bi-sector velocities within the pore at various
positions in the line profile. As can be seen from the bi-sector
velocities, which best represent lower atmospheric heights, a
global upflow with an average velocity of ∼8 km s−1 is present,
with a peak value approaching 14 km s−1 recorded. The
observed decrease in the plasma upflow velocities toward the
Ca II line core remains consistent with the previous work of
Cho et al. (2013). With the addition of a bulk plasma upflow,
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the initial speed calculated can be considered as a Doppler-
shifted phase speed, which incorporates both the phase velocity
of the wave and the bulk motion of the transfer medium.
Therefore, an estimate of the true phase speed of the waves can
then be derived by subtracting the LOS measurements from the
derived velocity, thus producing a phase speed on the order of
5 km s−1 at lower atmospheric heights, which is similar to, if
not below, the adiabatic sound speed predicted for these
locations (see, e.g., Jess et al. 2012b). Thus, the effect of the
waves being superimposed on top of a simultaneous bulk
upflow, alongside the potential effects of a twisted magnetic
field configuration (e.g., Erdélyi & Fedun 2006) may account
for the large measured Doppler-shifted phase velocity.

3.2. Oscillations in the Pore Area

Upwardly propagating intensity oscillations may be a direct
signature of magneto-acoustic wave modes (e.g., De Pontieu
et al. 2004; Jess et al. 2012c; Freij et al. 2014). Therefore, in
order to verify whether the detected oscillations also have the
observational signatures of sausage mode waves, it was
necessary to consider whether simultaneous periodic changes
in the area of the pore existed. When compared to the pixel-by-
pixel analysis employed for the intensity oscillations, which

Figure 2. The top panel is the sum of individual Fourier power spectra derived within the pore structure at Ca II K wavelengths. The Fourier power is displayed in
arbitrary units, while the oscillatory periods are plotted on a logarithmic scale to better display oscillations synonymous with the longer-period p-mode spectrum. The
lower panels are histograms of the phase angle values from the pixel-by-pixel intensity analyses for the 4170 Å continuum–G-band, G-band–Na I D1 and Na I D1–

Ca II K bandpasses. For each inter-bandpass gap, a peak can be defined representing the most prominent phase angle observed.

Figure 3. The average line of sight velocities within the magnetic pore,
measured from the IBIS 8542 Å Ca II data. The blue line represents the velocity
shifts in the line core, with the red and green lines denoting the velocity shifts at
100 and 150 mÅ, respectively, representing lower heights in the atmosphere
away from the chromospheric line core. The line core average velocity is
3.27 km s−1, with the 100 and 150 mÅ bi-sectors exhibiting average velocities
equal to 5.93 and 8.01 km s−1, respectively.
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provided 206 individual pixel measurements per time step, the
examination of periodic area changes has statistical limitations
due to only one area measurement being possible per instant in
time (rather than 206 individual intensity measurements).
Nevertheless, the extraction of phase delays between pore area
sizes as a function of atmospheric height was performed
identically to that described in Section 3.1.

The analyses identified area oscillations of similar period
ranges (181–412 s) to that of the intensity oscillations, thus
indicating the presence of compressional waves that are able to
modify the cross-sectional area with time. The results of the
phase analysis on neighboring bandpasses again provided a
consistently positive phase angle, reiterating the presence of
upwardly propagating compressive waves. Specifically, the
phase delays found in area oscillations between the 4170 Å
continuum–G-band, G-band–Na ID1, and Na ID1–Ca IIK
bandpasses were 6.35 ± 2◦. 16, 5.72 ± 6◦. 7, and 16.76 ±
13◦. 3, respectively. These results are comparable to the peak
values found for the pixel-by-pixel intensity oscillations (see
Figure 2). Thus, the identification of synchronous intensity and
area oscillations, alongside the remarkable similarity between
the phase delays for both sets of perturbations, provides
evidence for the presence of upwardly propagating sausage
mode waves within the pore.

3.3. Determining the Wave Mode

Employing the phase analysis techniques independently to
both intensity and area fluctuations as a function of atmospheric
height has confirmed the presence of upwardly propagating
sausage mode oscillations. However, these oscillations may fall
within the “slow” or “fast” sections of the dispersion relation.
The categorization of waves in this manner allows limitations
to be imposed upon properties such as the phase speed (Edwin
& Roberts 1983; Evans & Roberts 1990; Erdélyi &
Fedun 2010) and dissipative potential through mechanisms
such as thermal conduction (van Doorsselaere et al. 2011a).
Therefore, in order to categorize whether the observed sausage
mode oscillations are “fast” or “slow,” the phase relationships
between localized intensity and Lagrangian area oscillations
within each respective bandpass were investigated. Theory
predicts an in-phase relationship between intensity and area for
slow-mode waves, while a phase lag of ∼180° suggests the
presence of fast-mode oscillations (Moreels et al. 2013).

The criteria used in Sections 3.1 and 3.2 were implemented
to calculate the relevant phase relationships for the four band
passes. Prominent phase delays between intensity and area of
17 ± 21°, 19 ± 16°, 11 ± 3°, and 21 ± 20° were found for the
4170 Å continuum, G-band, Na ID1 and Ca IIK bandpasses,
respectively, with the area consistently leading the intensity
fluctuations in each bandpass. In accordance with Moreels et al.
(2013), this suggests a dominant presence of slow mode waves.

Sausage mode waves have already been shown to exhibit
strong velocity components along the tube axis (Fujimura &
Tsuneta 2009). As such, oscillatory patterns in LOS Doppler
velocities can be employed as a diagnostic tool when
comparing with simultaneous intensity fluctuations. Phase
relationships between the LOS Doppler velocity and the
Eulerian intensity are identified in Moreels & van Doorsselaere
(2013). It is shown that slow propagating modes will
demonstrate in-phase behavior. The LOS velocity can be
determined from the Ca II data from IBIS, where a series of
velocity bi-sectors were calculated. Such bi-sector

measurements sample the plasma velocities at locations in the
profile wings (i.e., away from the chromospheric line core),
and are therefore analogous to velocity measurements at lower
heights in the solar atmosphere. Thus, the LOS values
calculated from the wings of the Ca II IBIS scans will be
formed higher than the pure solar continuum (i.e., the 4170 Å
ROSA continuum), yet lower than the chromospheric forma-
tion heights of the Ca II line core, including those found in the
Ca IIK ROSA filtergrams. Therefore, in the case of the present
data, the velocity bi-sectors are most compatible with the
Na ID1 observational time series. Oscillations found in the
150 mÅ bi-sector velocities are observed to have a phase
relationship of ≈0.4 ± 0◦. 1 with the Eulerian intensity
oscillations derived from the Na ID1 filtergrams.
The approximately in-phase relationship between the LOS

Doppler velocities and the Eulerian intensities provides
confidence in a slow mode interpretation. The slight discre-
pancies found between observation and theory in terms of the
area and intensity phase angles (i.e., 17°, 19°, 11°, and 21°; see
above) may be an indication that there is a superposition of
both fast and slow sausage modes within the pore (albeit
dominated by the slow modes). It may also be the result of
varying opacity across the diameter of the pore, hence inducing
variations in the pixel-by-pixel formation heights sampled by
the filtergrams. This phase lag could also be caused by
dissipative effects, as observed by van Doorsselaere et al.
(2011b). However, due to the clear in-phase relationship
between the LOS Doppler velocities and the Eulerian
intensities, we are able to best interpret the observed waves
as propagating slow axisymmetric modes.

3.4. Assessing the Propagating Energy Flux of the Waves

Using a newly developed framework for evaluating the
energy flux of axisymmetric waves (Moreels et al. 2015b), a
detailed analysis of the energy of the observed MHD waves at
each atmospheric height can be deduced for the first time.
Before the energy analyses can be undertaken, features of both
the pore, its surroundings, and individual sausage oscillations
must be estimated as inputs to the energy calculations.

3.4.1. Deriving Plasma Parameters

In order to investigate the energy content of the waves, local
plasma parameters must be identified that can then be
integrated into a similar model atmosphere. Employing the
Very Fast Inversion of the Stokes Vector (Borrero et al. 2011)
algorithm, the LOS magnetograms provided by the HMI
instrument were decomposed to define a magnetic component
perpendicular the solar surface (i.e., Bz). The formation height
of the HMI magnetograms corresponds to ∼300 km above the
photosphere (Norton et al. 2006; Fleck et al. 2011), with the
pore revealing itself as a positive polarity with an area-averaged
vertical magnetic field strength ≈900 G, peaking at nearly
1500 G in the central region of the pore (lower-left panel in
Figure 1). Next, the Maltby et al. (1986) “hot” umbral model
“L” was scaled so that the magnetic field strength of the model
(at a height of ∼300 km) matched that of our HMI
observations. The “hot” umbral model was chosen as the best
approximation to the pore, given that it is significantly smaller
than a typical sunspot structure, and as a result is likely to be
marginally hotter at its core due to the fact that convective
processes will not be as severely inhibited (Sobotka et al.
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1999). Utilizing the (non-scaled) Maltby et al. (1986) density
values, alongside the scaled magnetic-field strengths, enabled
the calculation of the internal Alfvén speed, VA, as a function of
atmospheric height using the relation

m r
=V

B
, (1)

z

A

0

where B is the magnetic field strength, m0 is the magnetic
permeability, and ρ is the density of the local plasma. The solid
black lines in Figure 4 displays the plasma densities, kinetic
temperatures, scaled magnetic field strengths, and Alfvén
speeds as a function of atmospheric height. It is clear that for
lower atmospheric heights up to ∼700 km, the Alfvén speed
determined is ∼12 km s−1.

It was also necessary to employ model atmosphere
parameters, corresponding to solar plasma conditions outside
the magnetic pore, that could be directly compared with the
scaled Maltby et al. (1986) values. Examination of the bottom-
left panel of Figure 1 reveals that the pore exterior is still
magnetic in nature, with field strengths of the order of a few
hundred Gauss. As a result, the Vernazza et al. (1981) model
“D” atmosphere was chosen to best represent the exterior of the
pore structure. The VAL-D parameters are consistent with

magnetic network elements, and thus best represent the nature
of the solar plasma immediately outside the pore structure.
However, as the atmospheric height scales differ between the
Vernazza et al. (1981) and Maltby et al. (1986) models, each
set of parameter measurements were interpolated on to a
constant height separation grid equal to 100 km. The resulting
VAL-D plasma densities, kinetic temperatures, magnetic field
strengths, and derived Alfvén speeds are displayed in Figure 4
using a dashed line. Of notable comparison to the scaled
Maltby et al. (1986) values are the temperatures, magnetic field
strengths, and Alfvén speeds, all of which are smaller within
the lower solar atmosphere, thus remaining consistent with our
ROSA/CSUNcam imaging and HMI magnetogram
observations.
Although these models provide one of the best representa-

tions of the pore and its surroundings currently available, their
accuracy of the true conditions observed may be limited. In
particular, the modeled magnetic field is scaled through
observations at a single isolated height, leading to potential
uncertainties as a result of complex magnetic structuring. This
may produce an overestimation of magnetic field strength in the
lower atmosphere, especially considering our derived field
strength at the solar surface is on the order of 3000 G.
Furthermore, a typical sunspot model will incorporate

Figure 4. The plasma density (upper-left), kinetic temperature (upper-right), vertical magnetic field strength (Bz; lower-left) and derived Alfvén speed (lower-right),
estimated as a function of height above the solar photosphere for internal (solid line; deduced by scaling the “hot” umbral model of Maltby et al. 1986) and external
(dashed line; estimated directly from the VAL-D model of Vernazza et al. 1981) pore configurations.
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atmospheric expansion greater than the 15% we observed for
the pore. As a result, this may lead to the modeled pore
exhibiting greater plasma densities at higher atmospheric
heights compared to real life, and as such, the internal Alfvén
speed calculated here may be large in relation to typical
chromospheric channels. The lack of measured expansion may
also lead to larger longitudinal magnetic field strengths at
chromospheric heights than predicted by the model atmosphere
as a result of magnetic flux conservation. However, given that
the pore structure is not observable at higher heights in
simultaneous SDO imaging, this suggests that the magnetic
field may have fanned out into the surrounding magnetic
canopy, as one would expect for larger sunspot structures at
chromospheric and coronal heights. As a consequence, such
fanning will lead to a progressive decrease in the longitudinal
magnetic field strength with atmospheric height, in agreement
with the Maltby model (see the lower-left panel of Figure 4). In
the future, additional observational steps can be taken to
mitigate the issues highlighed here. In particular, complemen-
tary spectro-polarimetric observations, using absorption lines
such as Fe I 6302 Å, would allow for an accurate measurement
of the magnetic field at a different atmospheric height, hence
better constraining the magnitudes of the magnetic fields.
While we openly discuss any potential limitations of the model
parameters derived here, they still remain one of the best
approximations currently available.

3.4.2. Identifying and Characterizing Individual Perturbations

Thus far, the axisymmetric oscillations have been considered
as a superposition of multiple individual periodicities. How-
ever, in order to implement the energy analysis of Moreels et al.
(2015b), the oscillatory properties of individual periodicities
must be extracted from the time series. It was therefore
necessary to isolate linear oscillatory perturbations in order for
the energy analysis to be valid, but also to isolate waves that
could be identified over a narrow period range in order to limit
the associated uncertainties in the frequency domain. Periodi-
cities were investigated by filtering the intensity and area time
series in the frequency domain through use of Fourier
transforms. Two periods in particular were identified, a 210 s
sausage mode that was present for the first 844 s of the
observations, and a 290 s wave that was present for the entire
35 minutes duration of the time series (see, e.g., the upper panel
of Figure 2). Both wave modes exhibited clear sinusoidal
behavior, allowing area and intensity amplitudes to be easily
extracted as a percentage fluctuation above the mean, as
detailed in Table 1.

An important input to the energy calculations is the phase
speed of the waves as they propagate upwards, and the methods
of Moreels et al. (2015a) were used to calculate the phase
speed at each atmospheric height. The methodology utilizes a
uniform flux tube as an equilibrium model, and combined with

linear MHD theory, establishes a link between the phase speed
of an oscillation and the amplitude of the total intensity and
area fluctuations. A dimensionless amplitude ratio, A is defined
as

d
d
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I I

S S
, (2)

0

0

where δI is the amplitude of the intensity perturbation, I0 is the
mean intensity, δS is the amplitude of the area perturbation, and
S0 is the mean area. The phase speed is therefore defined as,
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where w k is the phase speed, γ is the ratio of specific heats, h
is the Planck constant, ν is the frequency at which the
observation was taken, kB is the Boltzmann constant, and T is
temperature within the pore. The sound speed, cS, is defined as

g
m

=c
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, (4)S

where g is the ratio of specific heats, R is the gas constant, T is
the temperature, and μ is the mean molecular weight. However,
Equation (3) is, strictly speaking, only valid for continuum
emission and not for specific emission/absorption lines.
Therefore Equation (3) should only be applied to the continua
found in the 4170 Å, G-band, Na ID1, and Ca IIK filters. While
significant numbers of absorption features are present in both
the 4170 Å and G-band filter response curves, the large spectral
coverage of the filters means that they will predominantly be
comprised of solar continua. For the Na ID1 and Ca IIK image
sequences we need a different inversion formula. Let us assume
that for any optically thick absorption line we can write the
intensity in terms of the local density and temperature, i.e.,

r=I F T( , ) where F is a smooth function. Following the same
methodology as Moreels et al. (2013, 2015a) we find
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where both of the derivatives are to be evaluated at r0 and T0
respectively. The indices “zero” stand for the equilibrium
parameters, i.e., r=F F T( , )0 0 0 . Indeed,whenweuse r =F T( , )

n n-h c h k T(2 ) exp( )3 2
B we recover Equation (3).

Unfortunately, the use of Equation (5) requires a detailed
knowledge of the precise formation heights of the Na ID1 and
Ca IIK spectral lines. Examining other lower atmospheric
spectral features, including the Hα and Mg II lines, Leenaarts
et al. (2012, 2013) demonstrated the difficulty in accurately

Table 1

Properties of the Upwardly Propagating 210 and 290 s Oscillations

Parameters Continuum G-Band Na I D1 Ca II K

210 s 290 s 210 s 290 s 210 s 290 s 210 s 290 s
Intensity Perturbation (%) 3.6 ± 2.5 3.4 ± 2.4 3.6 ± 2.5 2.8 ± 1.9 2.95 ± 2.09 2.2 ± 1.5 5.53 ± 3.91 5.6 ± 4
Area Perturbation (%) 1.53 ± 1.08 2.1 ± 1.48 2.92 ± 2.07 2.1 ± 1.48 3.25 ± 2.29 3.25 ± 1.62 4.75 ± 3.36 5.8 ± 4.1
Phase Speed (km s−1) 4.03 ± 0.66 2.5 ± 1 2.26 ± 0.83 1.9 ± 0.68 2.09 ± 0.89 2.08 ± 0.9 3 ± 1.5 2.68 ± 1.3
Energy Flux (kW m−2) 54.5 ± 26.3 38.4 ± 21.4 70.1 ± 35.8 34.1 ± 13.5 1.99 ± 0.8 2.48 ± 1.03 0.12 ± 0.08 0.13 ± 0.08
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linking the observed intensity to the localized density/
temperature. The authors claim that due to the chromosphere
not being in local thermodynamic equilibrium, it is therefore
difficult to isolate and quantify the local thermal properties of
the plasma. However, Leenaarts et al. (2013) revealed that the
temperature at τ = 1 is often related to the radiation brightness
temperature. Extending these results to Na ID1 and Ca IIK
filtergrams, we are able to use Equation (3) to interpret out
findings with T acting as the radiation brightness temperature.
An additional justification for using Equation (3) comes from
the fact that due to both filters having non-infinitely narrow
spectral windows, they will naturally sample a considerable
portion of the optical continuum. For example, the Na ID1 and
Ca IIK filters cover 0.17 and 1 Å wide regions, respectively,
with continua being clearly visible in the form of granulation in
the image sequences.

The inferred phase speeds, which are detailed in Table 1,
also provide further verification that the waves are slow modes.
Slow sausage modes are shown to propagate below the sound
speed, cS, of the flux tube (Edwin & Roberts 1983). The sound
speed inside the pore is derived from Equation (4), using the
atmospheric parameters displayed in Figure 4, and was
estimated as ∼7 km s−1 at the photospheric layer, which is
greater than the estimated phase speeds of the waves in each
band pass, thus supporting a slow mode interpretation. The
sound speed estimated in this way is also consistent with the
numerically calculated value of the sound speed found in Jess
et al. (2012b). Important, however, is the fact that the phase
speeds determined for the atmospheric heights corresponding
to the 4170 Å continuum and G-band are consistent with the
phase speeds estimated from the time-lag measurements
detailed in Section 3.1. This self-consistency provides
reassurance in our interpretation that the observed waves are
upwardly propagating slow axisymmetric oscillations.

3.4.3. Defining Whether the Modes are Surface or Body

Sausage mode waves can be further categorized based on
their structuring within the flux tube. Body modes exhibit
periodic structure along the tube radius for radial modes greater
than zero, whereas surface modes do not (Edwin &
Roberts 1983). The distinction between surface and body
modes has been shown to have an effect on the phase speed of
the waves (Moreels et al. 2013), but of greater importance are
the implications related to the calculated energy values. As
detailed in Moreels et al. (2015b), the additional internal
oscillations associated with body modes demand that the two
cases be considered separately. As such, individual energy
equations for both surface and body modes are defined by
Moreels et al. (2015b). Therefore, it is necessary to verify
whether the oscillations observed in the pore are surface or
body modes before energy calculations can be undertaken.

A neat verification of the surface/body nature of sausage
modes was initially presented by Moreels et al. (2013),
whereby the ratio of wave constants, κ, at a given height may
be defined as
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where P represents the period of an oscillation, p=k Pv2 ph is
the longitudinal wavenumber involving the phase speed of the

wave, vph, and cT is the tube speed of wave defined as

=
+( )

c
c v

c v

, (7)T
S A

S
2

A
2 2

with all other terms defined in previous sections. It is stated in
Moreels et al. (2013) that in the case of surface modes, the
evaluated expression fork2 will be positive. All values needed to
calculate k2 can be extracted from the model parameters
displayed in Figure 4, or from those defined in Table 1. Using
these terms,k2 was evaluated to be positive over all atmospheric
heights, indicating that the sausage oscillations observed in this
pore are slow propagating surface modes.

3.4.4. Calculating the Energy Flux

With the parameters of the plasma inside and outside the
pore defined, alongside the phase speeds for individual
periodicities at each height and the identification of their
surface mode nature, the energy flux can subsequently be
calculated. The work of Moreels et al. (2015b) utilizes a
uniform flux tube model, and calculates the wave energy by
integrating over the entire flux cylinder and its exterior, before
averaging over the period and wavelength of the oscillation,
with the equations used in this case being derived for surface
mode waves. Therefore, the resulting energies depend on the
physical features of the pore (size, magnetic field strength,
Alfvén and sound speeds, and density), in addition to the
properties intrinsic to the wave (period, phase speed, and the
Lagrangian displacement at the flux tube boundary). For
further details, a full and detailed description of the theory
required to calculate the energy of the waves is presented by
Moreels et al. (2015b).
The energy flux values for each wave are detailed in Table 1,

with the energies plotted in Figure 5 to highlight the observed
dissipation with atmospheric height. It is seen that the waves
initially contain in excess of 35,000Wm−2 at the solar surface.
The estimated wave energy decreases with height, with their
associated energies at the Ca IIK level being three orders-of-

Figure 5. The calculated energy flux of 210 s (red) and 290 s (blue) sausage
mode oscillations, both in W m−2. The heights from the solar surface are
approximate values that are stated in Section 3.1, with the energy flux values
plotted on a logarithmic scale to better highlight the rapid decrease in observed
energies with increasing atmospheric height.
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magnitude less than at their formation at the base of the
magnetic pore.

These results confirm the suitability of a magnetic pore to
carry compressive wave energy into the chromosphere. The
observed energy damping with height is directly related to the
reduction in observed wave power at higher atmospheric
heights. This may have a physical meaning since the
structuring of the pore is more noticeably diffuse at upper-
chromospheric heights, hence suggesting that the pore becomes
unsuitable for efficient wave energy transportation. It is also
expected that wave power will be lost due to the reflection of a
portion of the waves. Our phase angle histograms suggest that
approximately 30% of identified wave activity between
individual bandpasses propagates downwards. This can lead
to a reduction in the observed wave energetics at higher
atmospheric heights and, in part, explain the drop in energy
flux from the photosphere to the chromosphere.

An explanation of the sharp drop in energy flux with
atmospheric height could be attributed to leaky wave
characteristics, i.e., waves that are freely able to release their
energy into the surrounding plasma (Cally 1986). Sausage
mode oscillations displaying a leaky nature have already been
observed by Morton et al. (2012), and our suggestion for this is
based upon the relatively long wavelengths of the observed
oscillations. The wavelength of the oscillations can be deduced
using a method presented by Molowny-Horas et al. (1997), and
later applied by Zaqarashvili et al. (2007), where the
wavelength can be defined as

l
pd
dj

=
s2
, (8)

where ds is the distance traversed by the waves and dj is the
phase difference of the wave observed between the two distinct
heights. However, when employing this equation one must
consider a potential 2π uncertainty in the phase angle
calculated from the phase difference analysis. Such uncertain-
ties are mitigated here as a result of high cadence observations
that allow us to isolate the start/end points of the oscillation
cycles in each of the respective bandpasses. As a result, we
have confidence that wave activity is observed first in
filtergrams corresponding to the lower portions of the solar
atmosphere, hence validating our interpretation that the waves
are upwardly propagating. Using the values stated in
Section 3.1 corresponding to the 4170 Å continuum to G-band
transition, where d ~s 75 km and dj = ◦6 .12, the wavelength
of the sausage modes can be estimated as λ ≈ 4400 km. This
far exceeds the distance over which these waves are observed
to propagate (∼1000 km). Therefore, it appears that the
observed drop in energy flux occurs within one-quarter of the
wavelength of the waves. Many currently proposed damping
mechanisms hinge on the assumption that multiple cycles of
the wave are present. As a result, none of these would
adequately describe the wave damping we observe in the
magnetic pore.

An alternative scenario for the damping of the observed
energy may be through mode conversion. As the waves
propagate upwards, they will pass through a region where the
plasma β (i.e., the ratio of the plasma pressure to the magnetic
pressure) equals 1. In this regime favorable conditions exist for
waves to couple and mode convert (e.g., Ulmschneider

et al. 1991). For magnetic regions of the Sunʼs atmosphere,
the β = 1 layer is expected to be beneath the typical heights
sampled by the Ca IIK filter (Jess et al. 2012a), thus mode
conversion of slow sausage modes to fast modes within
inclined magnetic fields may occur (Bogdan et al. 2003). Such
mode conversion would likely occur at the inclined edges of
the pore perimeter, and coupled with the propensity for fast
modes to be leaky in nature, would help facilitate the rapid
dissipation of wave energy into the surrounding plasma.
We must draw attention to the previously described model

limitations, alongside other features that contribute uncertain-
ties to the calculated energies. As mentioned in Section 3.4.2,
the model parameters used to describe the pore contain
inaccuracies at different heights in the atmosphere, which will
have an effect on the derived energy flux values. As mentioned
previously, the magnetic field strengths used may be over-
estimated at photospheric heights, which will cause a
subsequent overestimation of the wave energy flux in the
4170 Å continuum and G-band data sets. Alongside this, the
potential underestimation of the pore density at chromospheric
heights (i.e., through potentially overinflated expansion
factors) may lead to the energy content of the waves in the
Na ID1 and Ca IIK bandpasses being underestimated. Further-
more, the uniform flux tube model employed here has several
limitations, i.e., it does not consider several physical effects
such as density stratification, flux tube expansion, and/or
dissipation. However, while the uniform flux tube model does
not consider these effects, it is still valid when used as a first-
order approximation, especially considering the pore studied
here exhibits minimal expansion with atmospheric height.
Thus, flux tube expansion will not have a significant impact on
the overall energy flux since the 15% area expansion observed
is relatively small. Andries & Cally (2011) have shown that,
for a slowly expanding flux tube, the perpendicular eigenfunc-
tions (which are used here to calculate the energy flux; Moreels
et al. 2015b) of MHD waves remain almost constant. In
addition, density stratification is not accounted for in the
equilibrium model to calculate the energy flux. On the other
hand, the energy flux is calculated at each localized height
separately using the equilibrium density at that height. Thus,
density stratification is to some degree naturally included in the
energy flux calculations.
For future studies, combining a more realistic pore model

atmosphere alongside a more detailed flux tube model may
subsequently result in improved energy and dissipation
estimates, particularly for atmospheric heights corresponding
to the Na ID1 and Ca IIK image sequences. Furthermore, for
display purposes in Figure 5 we utilized the Na ID1 and Ca IIK
formation heights estimated by Simoniello et al. (2008) and
Beebe & Johnson (1969), which correspond to values
approximately equal to 400 and 800 km, respectively. As
discussed above, these formation heights are relatively
uncertain due to the passbands used in sampling portions of
the spectral line wings, in addition to changes in opacity across
the magnetically structured pore itself. However, it is still
observationally evident from Figure 1 that each bandpass
samples a different region of the solar atmosphere, and as a
result, still highlights the clear reduction in wave energy with
atmospheric height even if the specific heights have a degree of
uncertainty.
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3.5. Oscillations in the Magnetic Field

In this paper, oscillations in the pore area, intensity, and LOS
velocity have been utilized to investigate the characteristics of
sausage mode waves. However, Fujimura & Tsuneta (2009)
revealed that simultaneous perturbations in the associated
magnetic flux should also be evident. The authors undertook
analyses of the spectropolarimetric properties of the photo-
spheric Fe I 6302.5 Å absorption line, from data obtained by the
Hinode spacecraft, to detect root mean squared oscillation
amplitudes between 0.3% and 1.2% above the mean. There-
fore, an additional investigation of fluctuations in the magnetic
field, alongside those already considered, would provide further
information about the mode and behavior of the sausage waves,
including the ability to diagnose non-trivial situations such as
the superposition of both fast and slow modes within the same
structure (Moreels & van Doorsselaere 2013). Unfortunately,
the data presented here does not have complementary high-
resolution spectropolarimetric observations. However, a natural
question arises as to whether it is possible to detect magnetic
field oscillations, particularly for larger-scale structures includ-
ing solar pores, with coarser resolution instruments such as
HMI. Thus, the first important step is to calculate what
magnetic field amplitude would be expected from the sausage
mode oscillations detected in our present data set, and then
compare these to the resolution and sensitivity of the HMI
instrument.

The magnetic flux, Φ, passing through a surface is given by

F = B S· , (9)

where B and S are the vector magnetic field strength and pore
area, respectively. The vector area is defined as

å=S n Sˆ , (10)i

i

i

where n̂ and Si are the normal to the pore area and scalar area of
the ith element of the pore surface, respectively. Now let us
consider a surface with a normal vector in the direction of the
magnetic field (i.e., = =B zB Bˆ z0 ), providing a pore cross-
section that is trapped in the x–y plane with a cross-sectional
area, A, so that =n zS Aˆ ˆ . Perturbing the variables, linearizing,
and assuming the net flux remains constant through the surface
defined by the cross-sectional area, gives

F = + +B S B S B S· · · , (11)0 0 1 0 0 1

or equivalently,

= +b A B A0 , (12)z 0 0 1

where A1 and bz are the perturbations in the area and the
vertical (i.e., z direction) magnetic field strength, respectively,
with A0 and B0 denoting the mean unperturbed area and
magnetic field values. Perhaps more importantly, we can re-
write this relationship as

= -
A

A

b

B
. (13)

z1

0 0

Hence, to be able to calculate the magnitude of the change in
magnetic field strength induced as a result of the upwardly
propagating sausage-mode waves, we need to utilize the area
amplitudes derived for each observational bandpass that are
detailed in Table 1.

Considering a photospheric average vertical magnetic field
strength of the pore equal to approximately 900 G (see, e.g., the
lower-left panel of Figure 1), and using the cross-sectional area
and amplitude values detailed in Table 1, we are able to
compute the magnitude of bz expected. Given the estimated
formation heights for each bandpass, defined in Section 3.1, the
scaled Maltby et al. (1986) magnetic field strengths corre-
sponding to these heights can be selected (solid line in the
lower-left panel of Figure 4). Thus, we can estimate the
magnetic field oscillation amplitudes present in each bandpass
to be 60, 30, 10, and 5 G, for the 4170 Å continuum, G-band,
Na ID1, and Ca IIK channels, respectively. For the HMI
magnetogram formation height of ∼300 km, and using a
≈2.2% area amplitude similar to that of G-band and Na ID1

observations, we estimate that a magnetic field oscillation equal
to 19 G should be present in the HMI magnetograms. Such an
oscillation with a peak amplitude ≈19 G is close to the noise
limit inherent to the HMI instrument, where previous analyses
by Liu & Schuck (2012) and Welsch & Fisher (2012) have
detected uncertainties in the measured field strengths to be
≈10Mx cm−2 and ≈30 G, respectively. Furthermore, the
cadence of the HMI vector (720 s) and LOS (45 s) magneto-
grams are not ideally suited to accurately detect waves with
periodicities as short as 3 minutes, suggesting the reliable
detection of magnetic field oscillations in pores is unlikely with
the HMI instrument. However, exploiting this relationship in
the future will allow comparisons to be made between observed
changes in magnetic isosurfaces and the oscillations found
within Stokes profiles (e.g., Balthasar et al. 2000). In addition,
as there are known difficulties interpreting complex Stokes
measurements, observing the changes in pore area could
provide a novel way of validating the magnetic oscillations
derived from simultaneous Stokes profiles.

4. CONCLUSION

Observations of sausage mode waves propagating from the
solar photosphere to the base of the transition region are
presented here for the first time. High resolution, multi-
wavelength data sets of a magnetic pore are investigated using
wavelet and Fourier analyses to identify oscillations within the
pore structure. Simultaneous oscillations in both intensity
emission and the area encompassed by the pore provide
evidence of slow sausage mode activity. Through analysis of
these oscillations in adjoining bandpasses, it is identified that
sausage modes with periods between 181 and 412 s are
predominantly propagating upwards from the photosphere to
the chromosphere. The phase angles calculated for these waves
between adjacent bandpasses indicate a phase speed in excess
of 15 km s−1. However, the LOS velocity information for this
pore shows a strong simultaneous plasma upflow, which is
believed to dominate these high speeds. As a result, the initial
velocity calculation can be considered as the Doppler-shifted
phase speed of the waves. Using theoretical considerations, the
waves are verified to be slow surface modes, propagating with
a phase speed on the order of 3 km s−1. The observed periods of
the waves are similar to that of the global solar acoustic
oscillations, and provide further insight that sausage mode
waves may be driven by the ubiquitous p-modes.
For the first time, a multi-layer analysis of the energy content

of the sausage mode waves is documented. Individual sausage
modes were identified for further study, with their specific
oscillation amplitudes in intensity and area deduced. It can be
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seen in Table 1 that the oscillation amplitudes increased
between photospheric and chromospheric heights, consistent
with what would be expected as the waves propagate into less
dense regions, since there will be fewer external restoring
forces for the area perturbations. Through the identification of
these amplitudes, the energy flux of the waves at each bandpass
was calculated. It is seen that the waves are formed at the solar
surface with a large energy magnitude in excess of
35,000Wm−2, which significantly reduces as they propagate
into the chromosphere. The limitations of the energy flux
model are also presented, and we suggest how improved
atmospheric and flux tube models may be able to help more
accurately constrain the calculated wave energies as a function
of atmospheric height. However, importantly, we show that
magnetic pores can act as viable conduits for sausage mode
waves to transport energy to higher atmospheric heights. The
energy flux values calculated show that these waves have lost
the vast majority of their energy before they reach the
chromospheric layer observed in Ca IIK filtergrams. This could
be due to wave reflection and conventional damping methods,
which are difficult to identify observationally, or that these
waves are inherent leaky modes and freely able to radiate
energy into the surroundings. However, MHD waves pre-
viously observed in chromospheric structures have exhibited
far greater localized energy flux, with Alfvénic waves identified
to contain 4–7 kWm−2 (De Pontieu et al. 2007), Alfvén waves
with energy flux of 15 kWm−2 (Jess et al. 2009), and sausage
modes displaying approximately 11,700Wm−2 (Morton et al.
2012). The smaller chromospheric energy values detected in
our observations, compared to previous studies, could be a
result of the structuring of the pore itself. The magnetic pore
under consideration is small and dynamic, is therefore more
difficult to resolve from the background in chromospheric
images, and cannot be positively identified in simultaneous
higher atmospheric imaging by SDO. The lack of pore
structuring at higher heights may be an indication of its
instability, and thus the pore is unable to remain a viable energy
conduit for compressible MHD waves at these higher atmo-
spheric heights.

Due to any proposed heating occuring below observable
MHD scales, there is a lack of observational evidence for the
heating of chromospheric plasma as a result of the damping of
sausage mode energy seen in the pore. Instead, the results
presented here help to clarify the validity of magnetic pores as
energy conduits for sausage mode waves. Further investigation
of sausage modes in a variety of pores at high spatial, temporal,
and spectral resolutions may provide a clearer picture of the
energy content and dissipative potential of these waves. With
the advent of the Interface Region Imaging Spectrograph (De
Pontieu et al. 2014) mission, and the unprecedented resolution
capabilities of the upcoming Daniel K. Inouye Solar Telescope
(formerly the Advanced Technology Solar Telescope; Keil
et al. 2003; Rimmele et al. 2010), there will be new and novel
ways to probe the important roles that magnetic pores and
sausage mode waves play in the heating of both the chromo-
sphere and corona.
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