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ABSTRACT
In this paper we consider simultaneous analytical solutions of continuity equations for
electron beam precipitation a) in collisional losses and b) in Ohmic losses, or mixed
energy losses (MEL), by applying the iterative method to calculate the resulting differ-
ential densities at given precipitation deph. The differential densities of precipitating
electrons derived from the analytical solutions for mixed energy losses reveal increased
flattening at energies below 10-30 keV compared to a pure collisional case. This flat-
tening becomes stronger with an increasing precipitation depth turning into a positive
slope at greater precipitation depths in the chromosphere resulting in a differential
density distribution with maximum that shifts towards higher energies with increase
of a column depth. While the differential densities combining precipitating and re-
turning electrons are higher at lower energies than those for a pure collisional case.
The resulting hard X-ray (HXR) emission produced by the beams with different initial
energy fluxes and spectral indices is calculated using the MEL approach for different
ratios between the differential densities of precipitating and returning electrons. The
number of returning electrons can be even further enhanced by a magnetic mirroring,
not considered in the present model, while dominating at lower atmospheric depths
where the magnetic convergence and magnitude are the highest. The proposed MEL
approach provides an opportunity to account simultaneously for both collisional and
ohmic losses in flaring events, which can be used for a quick spectral fitting of HXR
spectra and evaluation of a fraction of returning electrons versus precipitating ones.
The semi-analytical MEL approach is used for spectral fitting to RHESSI observa-
tions of nine C, M and X class flares revealing a close fit to the observations and good
resemblance to numerical FP solutions.

Key words: plasmas – Sun: atmosphere – Sun: flares – Sun: particle emission – Sun:
X-rays, gamma rays.

1 INTRODUCTION

It is well established that during solar flares, non-thermal
electron beams are accelerated somewhere at coronal at-
mospheric levels, and precipitate into the lower atmosphere
depositing their energy into the ambient plasma. The non-
thermal electrons lose their energy in collisions and ohmic
energy loses while producing bremsstrahlung hard X-ray
emission. Also a massive amount of non-thermal energy re-
leased by accelerated particles is converted into the ambient
plasma heating producing strong soft X-ray, ultra-violet and
optical emission.

Numerous observations of solar flares in a wide range
of electromagnetic spectra have provided a valuable insight
on the internal processes within the solar flares, leading to

⋆ E-mail:valentina.zharkova@northumbria.ac.uk

the development of different particle transport and energy
loss models. The most energetic emission produced by solar
flares, hard X-ray (HXR) and γ-ray spectra, are investigated
with Reuven Ramaty High-Energy Solar Spectroscopic Im-
ager (RHESSI ) (Lin et al. 2002) with the finest angular and
spectral resolutions. Imaging spectroscopy analysis of this
data is used as a powerful tool to explore the underlying
physics of particle acceleration and transport in solar flares.

Different methods are used to interpret the observed
spectra of energetic particles; the most accepted are the ana-
lytical solutions for energy spectra of precipitating electrons
derived from for pure collisional energy losses the inversion
of hard X-ray bremsstrahlung spectra of precipitating elec-
tron beams (Brown 1971, 1972) or from the direct solutions
of continuity equations (Syrovatskii & Shmeleva 1972). Elec-
tron beams precipitating into flaring atmosphere are also
found to induce an electrostatic electric field leading to sub-
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2 V. V. Zharkova and R. R. Dobranskis

stantial Ohmic losses for precipitating electrons (Knight &
Sturrock 1977; Emslie 1980; Diakonov & Somov 1988). This
electric field at the same time was assumed to produce a
return current mostly from the ambient electrons.

Although Zharkova & Gordovskyy (2006) have shown
analytically that the self-induced electric field also forms re-
turning electrons from the precipitating ones. Energy losses
in electric field are found to substantially decrease a precip-
itation depth of precipitating electrons (Zharkova & Gor-
dovskyy 2006), then a number of low energy (<100 keV)
electrons is also substantially decreased, when Ohmic losses
are considered (Diakonov & Somov 1988; Zharkova et al.
1995; Zharkova & Gordovskyy 2006; Sui et al. 2007). This
can lead to the electron beams with a greater initial energy
flux to induce a stronger electric field and, thus, to have
higher Ohmic losses (Zharkova & Gordovskyy 2006; Sui et
al. 2007).

In order to consider mixed energy losses for electron
precipitation the numerical methods are required. This in-
cludes the solution of a Fokker-Planck equation for collis-
sional losses in converging magnetic field by Leach & Pet-
rosian (1981) or for combined collisional and Ohmic losses
in converging magnetic field(McClements 1992; Syniavskii
& Zharkova 1994; Zharkova et al. 1995).

However, full understanding of the role of a self-induced
electric field in electron beam dynamics came only from
the simulation in the Fokker-Planck (FP) approach of the
time-dependent injection of power law electrons (Siversky
& Zharkova 2009). The authors for the first time derived
that the main part of returning electrons is formed from
precipitating electrons scattered to pitch angles with nega-
tive cosines (or returning beam electrons). This approach is
essentially different from the earlier one (Knight & Sturrock
1977) considering a return current formed by the ambient
electrons.

Using the Fokker-Planck approach to calculate distri-
bution functions of electron beams precipitating into a flar-
ing atmosphere, Siversky & Zharkova (2009) showed that
precipitating and returning beam electrons form an electric
circuit from the corona to the photosphere where the beam
electrons are recycled, or, travel many times up and down
while injection continues. The characteristic time-scale for
the creation of this electric circuit is 0.07-0.1 s, while the
travel time of relativistic beam electrons from the corona to
the photosphere is about 0.01 -0.1 s. This means that af-
ter the circuit is established the beam electrons can make
up to 10-100 journeys downward and upward resolving the
particle number problem because only (1-10)% of acceler-
ated electrons can account for the observed HXR photon
numbers.

Further progress with high-resolution observations,
made by the RHESSI payload, have provided the data lead-
ing to better understanding of photon and electron spectra
emitted during solar flares and to deriving the exact loca-
tions and shapes of HXR sources on the solar disc where
they occur (Brown et al. 2006; Krucker et al. 2008). Many
powerful flares are found to produce the elbow-type HXR
photon spectra with double power-law energy distributions
(Kontar et al. 2002; Conway et al. 2003; Holman et al. 2003),
which cannot be completely explained by purely collisional
energy losses.

Initially, the flattening of HXR photon spectra was ex-

plained by purely collisional model with an increased lower
cut-off energy by shifting it to the turning point where HXR
emission flattens (?)or by the partial HXR albedo effect at
its reflection from the photosphere (Massone et al. 2004).
However, these previous studies have empasized the impor-
tance of considering multiple energy loss mechanisms, par-
ticularly, inclusion of the self-induced electric field of precip-
itating electrons (Sui et al. 2007).

Zharkova & Gordovskyy (2006); Sui et al. (2007); Siver-
sky & Zharkova (2009) shown that ohmic losses can be the
most likely reason causing this flattening because electron
beams with the greater initial energy flux induce stronger
electric fields and, thus, have higher ohmic losses for lower
energy electrons. This leads to a greater flattening of their
photon spectra at lower energies. Since, a number of low
energy (<100 keV) precipitating electrons is substantially
decreased if both Coulomb collisions and ohmic losses are
considered. This causes flattening of energy spectra of elec-
trons at lower energy, that can be a rather logical interpre-
tation of an elbow-type HXR spectrum. This, in turn, allows
us to estimate photon spectra, directivity and polarisation
with close resemblance to the HXR and microwave (MW)
observations (Zharkova et al. 2010, 2011).

Of course, in a converging magnetic field of loop legs
more electrons can be returned back to the corona by
magnetic mirroring effect (Leach & Petrosian 1981, 1983;
Zharkova et al. 1995; Siversky & Zharkova 2009). Indeed,
Siversky & Zharkova (2009) have indicated (see their Fig.
7 and 8) that the beam electrons are returned back to the
corona by a converging magnetic field with the number of re-
turned electrons increasing with a precipitation depth when
the convergence factor and absolute magnitude of magnetic
field are progressively increased following the convergence
formulae (36 -37) in Siversky & Zharkova (2009)). In the
other words, a number of the mirrored electrons in the up-
per corona is much smaller than those from the upper or
middle chromosphere. Moreover, from all the 4 forms of the
definition of magnetic convergence available in the current
literature, the only one derived from the observations seems
to fit best the observed magnetic field magnitudes measured
in the chromosphere and photosphere (Siversky & Zharkova
2009).

Using this approach, it was shown from a comparison
of the theoretical and observed HXR and MW emission
(Zharkova et al. 2010, 2011) that the magnetic mirroring
affects noticeably only those electrons with higher energy
above a hundred keV which reach deeper atmospheric lev-
els where the magniture and convergence factor of magnetic
field are higher. At the same time, the mirroring of lower
energy electrons occurs at upper atmospheric depths where
the magnetic field and convergence factor magnitudes are
low that results in a lower fraction of the mirrorred elec-
trons with lower energies at these depths. While the return
current is produced by the self-induced electric field of beam
electrons immediatelly after the beam injection in the top
of the corona. This return current is mostly formed by the
electrons with the energies below 80 keV (Zharkova et al.
1995; Siversky & Zharkova 2009; Zharkova et al. 2011). It
becomes evident that a return current and magnetic mirror-
ing are the complementary effects defining electron distri-
butions and their high energy emission at different precip-
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Mixed energy losses. 3

itating depths (Siversky & Zharkova 2009; Zharkova et al.
2011).

Given the fact that the beam electrons are assumed
to have power law energy distributions, (E−γ), the bulk of
beam electrons is defined by those electrons with lower en-
ergies below 100 keV. These lower energy electrons, in turn,
primarily define the electrc circuit and return current formed
by precipitating and returning electrons, while only a small
fraction (≈ E−γ) of higher energy electrons can be affected
by magnetic mirroring. Hence, the magnetic mirroring ef-
fects can increase a number of higher energy electrons in
the population of returning electrons and, thus, can reduce
a spectral index of their resulting HXR emission at higher
energies (Zharkova et al. 2010, 2011), contrary to the ohmic
losses reducing the HXR spectral indices at lower energies
(Siversky & Zharkova 2009).

With all the significant progress in the interpretation of
HXR and MW emission, the numerical Fokker-Planck ap-
proach is rather complex and requires extensive calculations,
while observers of photon spectra with RHESSI or FERMI
payload would prefer to have a quick analytical tool for
their interpretation. Hence, an alternative semi-analytical
approach considering Coulomb collisions and ohmic energy
losses with a reduced computational time can be very useful.
This approach can be also extended in the future interpre-
tation by adding the analytical solutions for magnetic mir-
roring of beam electrons, similar to the analytical approach
considered by Zharkova & Gordovskyy (2005).

In the current paper we propose an iterative semi-
analytical method for the initial investigation of electron
beam parameters by combining the analytical solutions for
mixed energy losses (MEL). e.g. pure collisional and pure
Ohmic losses reported in Part 1 (Dobranskis & Zharkova
2015). The outcome of this method for electron distribution
functions is benchmarked by a FP approach and compared
with the HXR spectra observed in a few flares.

The iterative method for calculation of differential den-
sities of beam electrons for mixed energy losses (MEL) is
described in section 2, their resulting hard-X-ray intensities
are presented in section 3, a comparison of simulated spectra
with HXR photon spectra observed for a number of flares
are discussed in section 3.2 and conclusions are drawn in
section 4.

2 DIFFERENTIAL SPECTRA OF ENERGETIC
ELECTRONS FOR MIXED ENERGY LOSSES
(MELS)

Hard X-rays is bremsstrahlung emission produced by col-
lisions of precipitating beam electrons with the ambient
plasma electrons or ions. The loss of energy of precipitat-
ing electrons in ohmic losses, on the one hand, reduces the
energy of precipitating electrons, and, on the other hand, it
changes a direction of motion of low energy electrons so that
some part of them is reversed to a return current (Zharkova
& Gordovskyy 2006; Dobranskis & Zharkova 2015). These
can have a significant effect on HXR intensity distribution,
producing spectral flattening at lower energies (Zharkova &
Gordovskyy 2006; Siversky & Zharkova 2009).

However, for simplicity, the classic collisional approach
(Brown 1971, 1972; Syrovatskii & Shmeleva 1972) is imple-

mented in the RHESSI software to fit the observed photon
energy spectra, which gives the first views of electron precip-
itation in flares. It would be a great advantage for observers
to have an analytical or semi-analytical method considering
not only collisional but also ohmic losses that can be used
for the initial estimation of the contribution of these mech-
anisms into electron beam distributions over a precipitation
depth.

This can give researchers an initial idea on the role of
ohmic energy loses in the particular flare, while the outcome
of the analytical estimations can be later compared with the
results found from the numerical Fokker-Planck solutions.
This can be achieved using the analytical solutions found
from continuity equations for pure collisional and pure ohmic
losses reported in paper 1 (Dobranskis & Zharkova 2015) by
applying them iteratively as described below.

2.1 The iterative method of solution

The continuity equation for mixed energy losses cannot be
analytically integrable. However, the approximated solution
of CE for mixed energy loses can be found with an using
iterative method proposed here, by deploying the analytical
solutions found in the part I of this research (Dobranskis
& Zharkova 2015) for each energy loss mechanism. The dif-
ferential densities (DDs) for lixed energy losses are derived
from the updated solutions of continuity equations for colli-
sional and ohmic losses as follows.

2.1.1 Differential densities for pure collisions

Differential densities obtained from the updated CE solu-
tions for Coulomb collisions are described by the expression
(25) in Dobranskis & Zharkova (2015):

N(E, ξ)Coll = KN

√
E
(

E2 + 2aξ
)−

γ+1
2

×Θ
(

√

E2 + 2aξ − Elow

)

×Θ
(

Eupp −
√

E2 + 2aξ
)

, (1)

where KN is a normalisation constant, a is the colli-
sional coefficient, Θ represents the Heavyside step function,
and ξ is the column depth:

ξ (x) =

∫ x

0

n (t) dt, (2)

which defines a total number of particles in the line of sight,
within the area of one square centimetre.

2.1.2 Differential densities of precipitating electrons for

pure ohmic losses

Differential desnities of precipitating electrons obtained
from the updated CE for ohmic losses can be described by
the expression (40) in Dobranskis & Zharkova (2015):

N(E, s)OhmP = KNE
−

1
2 (E + eEsi)−γ

×Θ [(E + eEsi)− Elow] Θ [Eupp − (E + eEsi)] ,
µ = +1, (3)
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4 V. V. Zharkova and R. R. Dobranskis

where E is the self-induced electric field and s is a linear
precipitation depth.

2.1.3 Differential densities of returning electrons for pure

ohmic losses

Differential densities of ’returning electrons’ derived from
the updated CE solutions for purely ohmic losses is de-
scribed by the expression (41) in Dobranskis & Zharkova
(2015):

N(E, s)OhmR = KNE
−

1
2 (E + eEsi)−γ

×Θ [Eupp − E − eEsi] , µ = −1, (4)

2.1.4 Iterative steps

(i) As the first step, let us use the updated CE equation
(1) for purely collisional losses to estimate the differential
density (N(E, ξ)Coll) at the initial column depth (ξ).

(ii) This differential density (N(E, ξ)Coll) is used to cal-
culate electron beam energy flux F (E, ξ) which is required
to to estimate the induced electric field at a column depth
(ξ) as follows:

E (ξ) =
e

σ

∫ Eupp

Elow

F (E, ξ) dE, (5)

where σ defines the ambient plasma conductivity, and
F (E, ξ) refers to an electron beam energy flux, found from
the differential density at a given column depth.

Thus, we estimate the electric field from the updated CE
solution (equation 3) for collisional losses, which is then used
as a parameter in the DD solution for ohmic losses.

(iii) At each step the electron energies used in the up-
dated CE solutions for ohmic losses are adjusted to reflect
at the same step the energy losses in collisions.

(iv) Then in the next step electron energies for collisional
solutions are adjusted to fit the DDs found for ohmic losses
at the previous step and so on.

(v) This process is repeated for every column depth.

Using this approach one obtains the simultaneous solutions
for precipitating and returning electrons considering analyt-
ical solutions for pure collisions and ohmic losses for precip-
itating electrons (case 1) and for returning electrons (case
2). The results of DD calculations are discussed in the sub-
sections below.

2.2 Results: differential densities for precipitating
electrons

Differential densities for precipitating beam electrons losing
energy in Coulomb collisions and ohmic losses are plotted
in Fig. 1. The injected electron beams have the following
parameters: the initial energy flux of F0 = 1010 erg · s−1

(supplementary Fig. 1, top plots) and F0 = 1012 erg cm−2

(supplementary Fig. 1, bottom row plots), and the spectral
indices γ = 3 ( and supplementary Fig. 1, left column) and
7 (Fig. 1 and supplementary Fig. 1, right column).

The electric field is considered to be variable, having the
initial value E0 = 5 × 10−5 V/cm for less intense electron

beams (top row), and increasing to E0 = 3 × 10−3 V/cm
for more powerful beams (bottom row). The energy spectra
are constrained by the lower Elow = 12 keV and the upper
Eupp = 2 MeV cut-off energies. The results are plotted for
the column depth range from ξ = 2.8 × 1018 (upper curve)
to 5.1 × 1020 cm−2 (bottom curve).

As expected, the differential densities (DDs), estimated
for electron beams precipitating in MEL, considering the ad-
ditional energy losses in the electric field, are significantly
lower than the ones obtained for purely collisional case and
strongly depend on the beam’s initial flux and spectral in-
dex. The differential densities of a moderately intense elec-
tron beams with a lower initial flux F0 (supplementary Fig.
1a,b) show stronger (by the order of the magnitude) decrease
of electrons with lower energies at the smaller precipitating
depth, while at deeper atmospheric depths the differences
are nearly negligeable for a harder beam (γ=3) and still
noticeable for the softer one (γ=7). And for a stronger elec-
tron beams with the higher initial flux F0 (supplementary
Fig. 1c,d), which have much greater energy losses caused by
the self-induced electric field, there is a significant (by a few
orders of the magnitude) decrease of differential densities of
beam electrons at lower energies calculated for MEL losses
compared to the pure collisional ones.

In general, the differential densities calculated for MELs
have distributions with the positive slopes towards lower
energies than for pure collisional losses with the slopes in-
creasing with the precipitation depth (compare the curves at
energies below 3 keV (blue) or below 30 keV (red)) forming
wide maxima at greater depths in the chromosphere. The
electron beams loosing their energy in MELs have steeper
positive slopes and more pronounced maxima, than the ones
loosing their energy in purely Coulomb collision that resem-
bles the findings of numerical solutions with FP (Siversky &
Zharkova 2009). The maximum shifts towards higher ener-
gies with the increase of a column depth, e.g. approximately
the two orders of a magnitude increase in column depth
(from 2.8 × 1018 to 5.1 × 1020 cm−2) would shift the max-
imum from 4 keV to 21 keV (Fig.1).

The differential density distributions presented for lower
γ = 3 (supplementary Fig.1a,c) and higher γ = 7 (sup-
plementary Fig.1b,d) spectral indices show that for harder
beams there are smaller differences between the differen-
tial densitiess calculated for MEL and pure collisional case
than for the beams with higher spectral index. This happens
because the electric field responsible for ohmic losses is in-
duced by the precipitating electrons themselves. Thus, it is
proportional to the initial energy flux of a beam, leading to
higher ohmic losses for more intense beams and has much
more complex dependence on their spectral index as shown
in formulae (1) and (3). This results in a lower magnitudes
and increased positive slopes of differential density of beam
electrons at given depths for the MEL losses for harder and
more intense beams and leads to the maxima moving to
higher energies for softer beams that can be essential for the
generation of plasma turbulence.

2.3 Results: differential densities for returning
electrons

It was demonstrated by Fokker-Planck approach (Siversky
& Zharkova 2009), that a large fraction of precipitating elec-
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(a) F0 = 1012erg cm−2s−1, γ = 7

Figure 1. Differential densities of precipitating electron beams calculated for MEL (Coulomb collisions + ohmic losses) (the solid lines)
for beam electrons with energies in a range of 16-384 keV, at the column depths of ξ of 2.8 × 1018 cm −2 (blue), 1.3 × 1019 cm−2

(green), 7.6 × 1019 cm−2 (magenta) and 5.1 × 1020 cm−2 (red). For comparison, differential densities of electron beams with the same
parameters losing their energy in Coulomb collisions are plotted by dashed lines.
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(a) F0 = 1012erg cm−2s−1, γ = 7

Figure 2. Differential densities of electron beams derived for precipitating electrons losing their energy in Coulomb collisions plus
returning electrons (solid lines)in comparison with differential densities calculated for pure collisions (dashed lines). Results are presented

at the same column depths as in Fig. 1 for beam electrons with the energy range of 12 keV- 2 MeV. The colour schemes of the curves
correspond to the depths described in Fig. 1.
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6 V. V. Zharkova and R. R. Dobranskis

trons can be turned by their own electric field back to the
top in the corona where they are injected from. As we discov-
ered in section 2.2, the distributions of returning electrons
are substantially different from those of the precipitating
electrons losing their energy in electric field.

In order to estimate the effect of returning electrons on
hard X-ray emission emitted upwards to the corona, let us
investigate the differential densities of electrons for a com-
bination of electron beams losing their energy in Coulomb
collisions at given depth (equation 1) and returning electrons
(equation 4) gaining their energy in a self-induced electric
field. The variations of the resulting differential densities
are presented in Fig. 2 for the initial energy flux F0 = 1012

erg · cm−2s−1 and γ=7 and in the supplementary Fig. 2 for
hard γ = 3 (supplementary Fig.2a,c) and soft γ = 7 (sup-
plementary Fig.2b,d) electron beams with the initial energy
fluxes of 1010 erg/cm2/s (supplementary Fig.2a,b) and 1012

erg/cm2/s (supplementary Fig.2c,d).
The resulting differential densities at every precipita-

tion depth of combined precipitating and returning electrons
are higher than those for purely collisional case because the
returning electrons being accelerated by the electric field in-
crease the number of electrons at given depth because they
gain energy in this electric field and increase the resulting
differential density for MEL. The impact of an electric field
magnitude on differential density distributions is compared
in the supplementary Fig. 2 (top row), where the electron
beams induce the self-induced electric field of moderate mag-
nitude of (E0 = 7 × 10−6 V/cm), in the suplementary Fig.
2 (bottom row) calculated for a stronger electric field mag-
nitude (E0 = 3 × 10−3 V/cm).

Again, similar to the precipitating electrons shown in
Fig. 1, the increase of differential density at given precip-
itating depth in the ”returning” electrons is more signifi-
cant for more powerful electron beams, due to a very strong
self-induced electric field produced by such the beams. An
increase of the electric field magnitude results in some flat-
tening of the positive slope formed by precipitating elec-
trons at lower energies, especially at the deeper atmospheric
depths, from where the returning electrons gain the largest
amount of energy. This increase, in fact is comparable with
but slighly lower then the decrease of DDs for precipitating
electrons described in section 2.2.

While the dependence of DDs for precipitating plus re-
turning electrons on spectral indices are much more compli-
cated following the formulae (1) and (4). At higher atmo-
spheric levels, or lower precipitation depths, the increase of
returning electronsbecomes extremely significant approach-
ing one order of the magnitude for harder beams (γ=3), 3
orders of magnitude for softer moderate beams (γ=7) and 4
orders of the magnitude for a softer stronger beam (Fig. 2).
Although, with the increase of a precipitation depth beyond
the stopping depth of electrons with lower cutoff energy (12
keV), the densities of returning electrons become negligeable
leading to the same differential densities as for the precipi-
tating electrons only shown in Fig. 1.

2.4 Fractions of precipitating and returning
electrons

In order to estimate accurately the ratios between the num-
bers of precipitating (µ = +1) and returning (µ = −1)

(a) F0 = 108erg cm−2s−1

(b) F0 = 109erg cm−2s−1

(c) F0 = 1010erg cm−2s−1

Figure 3. Variations with a column depth of precipitating elec-
tron ratio derived from Fokker-Planck approach for electron
beams with spectral index γ = 3 (blue), γ = 5 (green) and γ

= 7 (magenta). The solid lines are used for the pitch angle dis-

persion at injection of ∆µ = 0.2 and dashed lines for ∆µ = 0.02.

electrons from a total number injected, let us use the so-
lutions obtained from numerical Fokker-Planck approach
(FPA) (Siversky & Zharkova 2009). The ratio can be ex-
pressed as a percentage of precipitating electrons present at
a certain column depth from the total number of electrons
(100%) including precipitating and returning ones. This ra-
tio is found to be dependent on electron beam parameters
as outlined in Tables 1, 2 and 3 showing its variations for
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Table 1. Fraction of precipitating electrons at ξ = 2.4 × 1017

cm−2

γ 3 5 7

∆µ 0.2 0.02 0.2 0.02 0.2 0.02

F = 108 77.2% 85.4% 77.4% 85.5% 77.6% 85.6%

F = 109 70.5% 79.0% 68.0% 76.5% 67.2% 75.6%

F = 1010 45.2% 56.7% 43.0% 53.00% 42.3% 51.8%

Table 2. Fraction of precipitating electrons at ξ = 2.5 × 1018

cm−2

γ 3 5 7

∆µ 0.2 0.02 0.2 0.02 0.2 0.02

F = 108 73.1% 81.4% 73.0% 81.2% 73.2% 81.1%

F = 109 67.5% 75.3% 65.6% 72.9% 65.0% 72.0%

F = 1010 49.4% 56.4% 48.9% 54.0% 49.1% 53.6%

different initial energy fluxes F , spectral indices γ and the
pitch angle dispersion ∆µ.

From Table 1 one can derive that on the top of the at-
mosphere (ξ = 2.4 × 1017 cm−2), weak electron beams (F
= 108 erg cm−2 s−1) have highest percentage of precipitat-
ing electrons (77.23% for γ = 3, ∆µ = 0.2), which becomes
only slightly higher for softer electron beams (77.58% γ =
7). A smaller pitch angle dispersion (∆µ) at injection of
beam electrons (defining beams directed closer to the direc-
tion µ=1) leads to a further increase by approximately 8%
(from 77% to 85%), allowing for 15-23% of the number re-
turning electrons, reducing thus the number of precipitating
electrons.

Table 3. Fraction of precipitating electrons at ξ = 2.4 × 1019

cm−2

γ 3 5 7

∆µ 0.2 0.02 0.2 0.02 0.2 0.02

F = 108 70.8% 71.8% 71.5% 72.1% 71.9% 72.4%

F = 109 69.2% 69.6% 70.3% 70.5% 71.2% 71.3%

F = 1010 63.9% 64.5% 68.2% 68.6% 70.7% 71.1%

In case of powerful electron beam with the initial energy
flux (F = 1012 erg cm−2 s−1) and small γ = 3, ∆µ = 0.2), a
stronger self-induced electric field is generated. This results
in a larger number of returning electrons moving towards
the corona, or in a much lower percentage (45.21% of pre-
cipitating electrons. The increase of spectral index leads to
increase of electric field and thus, to a decrease of percentage
of precipitating electrons (by 3%). While a lower pitch angle
dispersion (∆µ) increases this percentage by approximately
9-11% (from 45% to 56% for γ = 3, or from 42% to 51%
for γ = 7), allowing for 43-57% of the returning electrons,
depending on spectral index and angle of dispersion.

Further investigation of Tables 2, 3 and Fig.3 reveals
that electron beams with a very weak initial energy flux, e.g.
F = 108 (Fig.3a), 109 (Fig.3b) erg cm−2 s−1, and smaller
pitch angle dispersion ∆µ = 0.02 have the highest percent-
age of precipitating electrons at the upper atmospheric level
while this number decreases exponentially with the increase
of a column depth.

On the other hand, the maximum in the percentage
of precipitating electrons shifts deeper into the atmosphere
(from ξ = 1017 cm to 5.019 cm) with the increase of the
initial energy flux F , which means that a significant number
of electrons reaches the chromospheric levels. The shifted
maximum first becomes clearly visible in Fig. 3b (F = 109

erg cm−2 s−1, ∆µ = 0.2). While, in the case of F = 1010

erg cm−2 s−1 (Fig.3c) the maximum is well pronounced for
both magnitudes of a pitch-angle dispersion ∆µ = 0.2 and
0.02.

Similar to FP solutions (Siversky & Zharkova 2009), in
the iterative use of the analytical solutions for collisional
and Ohmic losses, a magnitude of an initial energy flux, F ,
of beam electrons has the most significant impact on the
density ratios of precipitating-to-returning electrons at all
column depths. While the variations of a pitch angle dis-
persion has a significant effect only at higher atmospheric
levels up to ξ = 2.0 × 1019 cm−2, and they are 8% higher
for narrower beams with ∆µ = 0.02). At deeper atmosphere
electrons become strongly thermalised approaching nearly
isotropic distribution at the lower chromosphere levels.

Additionally, continuity equations for purely collisional
(formula 1) and ohmic (formula 3) energy losses, are inte-
grated by energy in the following way:

N(ξ) = KN

∫ Eupp

Elow

√
E
(

E2 + 2aξ
)−

γ+1
2 dE =

=
KN × 2

1−γ
2

3
E

3
2

(

E2

aξ
+ 2

)

γ+1
2

(

E2 + 2aξ
)−

γ+1
2

×





∞
∑

n=0

(0.75)n
(

γ+1
2

)

n

(1.75)n

(

− E2

2aξ

)n

n!



 |Eupp

Elow
(6)

N(s) = KN

∫ Eupp

Elow

E−0.5 (E + eEsi)−γ dE =

= 2KN

√
E

(

E

eEsi
+ 1

)γ

(E + eEsi)−γ

×





∞
∑

n=0

(0.5)n (γ)n
(1.5)n

(

− E
eEsi

)n

n!



 |Eupp

Elow
, (7)
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producing the solutions for electron density N for any given
spectral index γ at a given column depth ξ, for pure collisions
(Eq. 6), and at a linear column depth s, for pure ohmic losses
(Eq. 7).

It can be seen that, similar to Zharkova & Kobylinskij
(1992), the total beam abundances integrated over all en-
ergies either for pure collisional losses, N(ξ), or for purely
ohmic losses, N(s), are linearly proportional to the beam’s
initial energy flux, which is implictly included into the nor-
malisation coeffciient K(Dobranskis & Zharkova 2015).

In fact, the total densities, N(ξ), of precipitating elec-
tron beams loosing their energy in collisions (Eq. 6) decrease
proportionally to a column depth as N(ξ) ≈ ξ−(γ+1) that
is similar to the results reported by Zharkova & Kobylin-
skij (1992) for pure collisional losses. While for the beam
electrons loosing their energy in Ohmic losses the total elec-
tron abundances, N(s), (Eq. 7) are decreasing with a linear
depth s as N(s) ≈ s−γ . Hence, harder electron beams (with
smaller γ) will have a smaller density decrease with depth
than the softer ones that enforces a further decrease of the
abundances, if both the losses are combined.

3 HXR INTENSITY OF ELECTRONS WITH
MIXED ENERGY LOSSES (MELS)

As it was shown in section 2 above, by combining iteratively
the solutions of the updated CEs for both Coulomb colli-
sions and ohmic losses one can find the semi-analytical solu-
tions for differential densities of precipitating beams with
mixed energy losses. This allows us to evaluate the im-
pact of collisional and ohmic losses on the resulting HXR
bremsstrahlung emission.

The differential densities, obtained for collisional and
ohmic losses cases are converted into the distribution func-
tions f , f = N(E,ξ)

N(E,0)
(Dobranskis & Zharkova 2014, 2015).

In the calculations we use the fractions of precipitating and
returning electrons defined in section 2.4. For comparison,
the distribution functions fN are obtained for the same
beam parameters from a numerical Fokker-Planck approach
(Siversky & Zharkova 2009).

In order to estimate the HXR intensity, I, for given
photon energy ε and viewing angle ψ, the corresponding
distribution functions f are integrated by azimuthal angles
φ (giving the factor 2π before the intergral), pitch angle
cosine µ, electron energy η and column depth ξ as follows
(Zharkova et al. 2010):

I (ε, ψ) = 2πAxK

×
∫ ξmax

ξmin

∫

∞

ε

∫ 1

−1

f (ξ, η, µ) ησH (η, ε, ψ, µ) dµdηdξ, (8)

where ε is a dimensionless photon energy hv/E0, σ
H - are

the cross-sections for HXR emission with energy ε formed by
electrons with given energy and angle parameters and Ax =
S

4πR
2E
me

, where S defines area of a flare and R is a distance
to the observer (≈ 1 a.u). In the equation (8) the relativistic
cross-sections are used following Bai & Ramaty (1978) with
the correction proposed by Zharkova et al. (2010) .

Table 4. Ratios of elecron abundances for mixed energy losses
(MEL) obtained for precipitating (MEL-P) and returning (MEL-
R) electrons as estimated from numerial simulations with Fokker-
Planck approach for different initial energy fluxes (Siversky &
Zharkova 2009).

F0 = 108erg cm−2s−1 90% MEL-P + 10% MEL-R

F0 = 1010erg cm−2s−1 70% MEL-P + 30% MEL-R

F0 = 1012erg cm−2s−1 50% MEL-P + 50% MEL-R

3.1 HXR intensities from precipitating and
returning electrons

Let us calculate the HXR emission (Eq. 8) produced by
electron beams towards an observer by assuming that it is
produced a) directly by the returning electrons and b) by
the precipitating electrons whose emission is fully reflected
from the photosphere (a full albedo effect). In this scenario
one can utilize the ratios of the numbers of precipitating-to-
returning electrons derived from FPA in the previous sec-
tion 2.4. For this purpose the differential densities obtained
with the updated CE solution for MEL for both precipi-
tating (Coulomb collisions & ohmic losses) (MEL-P) and
returning (Coulomb collisions & returning electrons) (MEL-
R) beam electrons are combined using the given ratio for
their abundances.

The HXR intensities plotted in Fig. 4 and in the supple-
mentary Fig. 4 are obtained for the electron beams with the
same parameters as in Fig. 1 ( and supplementary Fig. 1,
respectively) for the following ratios of precipitating and re-
turning electrons: 100% MEL-P (black line), 90% MEL-P +
10% MEL-R (blue line), 70% MEL-P + 30% MEL-R (green
line), 50% MEL-P + 50% MEL-R (magenta line). The in-
tensities calculated from the Fokker-Planck approach are
shown by crosses. From Fig. 4 one can see, that the inclusion
of returning electrons has a significant effect on the result-
ing HXR intensity spectra produced jointly by precipitating
and returning electrons that is similar to the conclusions
derived from the full Fokker-Planck approach (Zharkova &
Gordovskyy 2006; Siversky & Zharkova 2009).

It can be observed that for weaker beams the inten-
sity distributions derived by FP solutions are closer to the
distributions when a fraction of returning electrons ranges
between 10 (supplementary Fig.4a) and 30 percent (supple-
mentary Fig.4b), while for more intense beams the FP curve
fits the MEL curve for 50% of returning electrons ( supple-
mentary Fig.4c,d). It can be seen that an increase (10%,
30%, 50%) of the returning electron percentage would result
in a noticeable decrease by 0.2 of the lower energy spectral
index δ1 (or in steepening of a HXR intensity spectra) for
any additional 20% of returning electrons (see Table 4).

For example, a weak hard beam precipitating electrons
combined with at least 10% of returning electrons result in
a considerable flattening of their HXR intensity spectra at
lower and steepening at higher energies (supplementary Fig.
4a). In the case of stronger but still hard electron beams (γ =
3, supplementary Fig. 4c) the flattening would extend to
approximately 40 keV, while for stronger soft electron beams
(γ = 7, supplementary Fig.4d) it would reach approximately
60 keV.
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(a) F0 = 1012erg cm−2s−1, γ = 3

Figure 4. Hard X-ray intensity in relative units, produced by beam electrons loosing their energy in mixed energy losses (MEL) for
precipitating (MEL-P) and returning electrons (MEL-R): MEL-P (black line), 90% MEL-P + 10% MEL-R (blue line), 70% MEL-P +

30% MEL-R (green line), 50% MEL-P + 50% MEL-R (magenta line), and from Fokker-Planck approach (crosses). The HXR intensity
variations are plotted for low (top row) and high (bottom row) initial energy fluxes of beam electrons and for the beams with hard (left

column) and soft (right column) energy spectra.

This explains in very simple analytical terms the simi-
lar fundings presented earlier from Fokker-Planck solutions
(Zharkova & Gordovskyy 2006; Siversky & Zharkova 2009),
describing the HXR intensities, which reflects very non-
linear dependence on the parameters of electron beams. In
the other words, we demonstrate here that the electron dis-
tribution functions formed by the redistribution of precip-
itating and returning electrons caused by the electric field
induced by the precipitating beam itself are accountable for
the variations of their resulting HXR intensities. This allows
us to derive the beam parameters and the ratio of precipi-
tating to returning electrons from fitting their HXR distri-
butions obtained from observations.

3.2 Fitting to observations the simulated HXR
spectra from beams with MELs

3.2.1 Methodology

Using the proposed iterative method for analytical calcula-
tion of differential densities for precipitating beam electrons
with MEL (section 2.1), one can apply a spectral fitting of
the observed HXR emission to those calculated using the
MEL distribution functions. This procedure was applied to
the main events (emission at the flare footpoints) of nine
flares (GOES class C, M and X) summarized in Table 5.
The HXR photon energy spectra were obtained for the main
HXR bursts in the energy bands from 10 to 100 keV and
plotted in Fig.5.

The images are reconstructed using the high-precision
PIXON algorithm (Hurford et al. 2002) from the RHESSI
branch of SolarSoft (Lin et al. 2002). The integration time
was chosen according to a flare class, with 8 sec for X-class,

12 sec for M-class, and 20 sec for C-class flares. Twenty
PIXON images were reconstructed for each flare, using the
energy bins with logarithmic spacing, ranging from 10 to
100 keV following the methodology described by Hurford et
al. (2002). The best image quality, was obtained using the
detectors 2 to 7 (front segments only). Then, the thermal
component is fitted to the observed photon flux, using fitting
routines in the OSPEX application (Hurford et al. 2002; Lin
et al. 2002).

Finally, the HXR parts of the photon spectra derived
from RHESSI payload are fitted with the HXR emission
obtained from CEs for the mixed energy losses (Dobran-
skis & Zharkova 2015), the original CE for pure collisions
and from the numerical Fokker-Planck approach (Siversky
& Zharkova 2009).

3.2.2 Fitting the simulated HXR spectra to observations

The results obtained through the spectral fitting using the
standard RHESSI methods and the method described in the
previous section are presented as a sample in Fig.5 and the
supplementary Fig. 5 for 9 flares with the flare parameters
summarised in Table 5. The observed HXR intensity is rep-
resented by crosses, with the black line defining the thermal
component. The same initial energy fluxes are used for elec-
tron differential densities derived from the original CE (with
pure collisional losses), from the two CEs with MELs using
the iterative method decribed in this paper (see section 2.1)
and for Fokker-Planck approach using the same MELs.

From Fig.5, one can see a clear increase in the overall
HXR intensity with the increasing flare index likely pro-
duced by electron beams with a higher initial energy flux.
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(a) 08 Jan 2014, M3.6 class.

Figure 5. Examples of the HXR photon energy spectra obtained for the main HXR bursts in the energy bands from 10-100 keV for a

flare of class M (see for more plots the supplementary Fig. 5) for the flares from the list summarised in Table 5. The fitting is done using
a) thermal component (black line); b) the updated CE solutions for Coulomb collisions (magenta); c) the CE solutions for MEL (green)

for the relevant ratios of returning and precipitating electron abundances and d) Fokker-Planck solutions for the same beam parameters
(blue line). The parameters are compared to the HXR intensity of the flares estimated by PIXON algorithm (crosses) (see the text for
details).

For C class flares the HXR emission is observed in the band
of 16-18 keV, for M class flares - in the band of 18-20 keV,
and for X-class flare - in 27-30 keV. For more powerful flares
(or beams) the HXR energy spectra become double power
laws. The break in the HXR photon spectra shifts towards
higher energies with an increase of the flare class (or an in-
crease of the injected beam initial energy flux).

The investigation of spectral fitting with the different

solutions revealed, that the increase of the initial energy
flux of beam electrons would increase their resulting HXR
intensity. The spectral index used for the mixed energy loss
(MEL) model would differ by only 0.1 from the one used
with Fokker-Planck approach (FPA). And only in a single
case the difference would become 0.2 , for the most powerful
flare of 25 October 2013 (GOES class X2.1) (Table 5), which
coincides with the conclusions from the previous paper Do-
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branskis & Zharkova 2015 (Part 1) (Dobranskis & Zharkova
2015).

The spectral indices of the HXR emission derived from
the MEL and Fokker-Planck solutions are presented in the
5th and 6th columns of Table 5 with the ratios of precipitat-
ing/returning electrons best fitting the observations shown
in the last column. In general, fitting of the observed HXR
emission by that simulated for the electrons beams with
MELs can be summarised as follows:

(i) For medium (class M) and powerful (class X) flares
the proposed joint MEL solutions combining pure collisions
and ohmic losses show a closest fit to the observed curves of
HXR photon spectra for a particular fraction of returning
and precipitating electrons shown in the last column of Table
5.

(ii) For more powerful flares of class X the impact of
ohmic losses becomes more pronounced resulting in higher
fraction of returning electrons, and thus, in noticeable spec-
tral flattening of HXR intensity at lower energies.

(iii) Spectral indices of the simulated HXR emission de-
rived with the MEL approach are rather close to those de-
rived with FP approach for similar mixed energy losses.

Hence, the MEL approach can explain in very simple
terms the spectral flattening towards lower energies by the
increased ratio of returning electrons compared to the pre-
cipitating ones as pointed by Zharkova & Gordovskyy (2006)
and Siversky & Zharkova (2009). In addition, the proposed
mixed energy loss approach allows us to derive a prelimi-
nary fraction of returning electrons in the whole population
in beam electrons, which provides a good starting point for
the further Fokker-Planck fitting, if required.

Of course, some discrepancies appearing between MEL
and FP approaches can occur due to the fact, that a
full pitch angle scattering is not considered in the semi-
analytical mixed energy loss approach that can reduce the
derived spectral indices compared to those found from FP
solutions. Also in the either approach we do not consider
magnetic mirroring in converging magnetic field affecting
electrons with higher energies that can also slightly reduce
the spectral index of resulting HXR emission at higher en-
ergies (Zharkova et al. 2011). However, in the four cases out
of nine flares considered, the spectral indices derived with
the MEL approach are practically identical to FPA, with a
difference less than 0.1 (see Table 5).

However, the proposed MEL approach to calculation of
electron beam densities and their resulting HXR emission al-
lows any user to reduce by 30-40 times a computation time
(a few minutes) required for interpretation of the RHESSI
spectra, compared to hours required to calculate distribu-
tion functions and HXR emission for a flare using FP ap-
proach. This IDL procedure can be easily implemented in
the RHESSI software for the benefits of all the RHESSI
users.

4 CONCLUSIONS

In this paper we consider the simultaneous analytical so-
lutions of continuity equations for electron beam precipita-
tion a) in collisional losses and b) in Ohmic losses, or mixed
energy losses (MELs), by applying the iterative method to

Table 5. Variations of spectral Indices γ of the HXR emission

produced by beam electrons with the initial energy fluxes F0 and
ratios of precipitating/returning electrons with the best fit to the

RHESSI observations.

Flare
Date Peak Class Flux F0, MEL γ FP γ p/r ratio

time UT erg/cm2/s %

01 Oct 2012 05:03:26 C1.8 5.2·108 3.2 3.2 95/05

17 Jan 2014 08:29:30 C2.2 6.1·108 3.4 3.4 95/05

17 Jan 2014 19:20:22 C7.1 10.1·108 3.6 3.7 90/10

13 Jan 2014 21:51:02 M1.3 9.7·1010 4.1 4.1 75/25

19 Dec 2013 23:18:26 M3.5 12.8·1010 4.2 4.3 70/30

08 Jan 2014 03:46:10 M3.6 13.0·1010 4.3 4.4 70/30

25 Oct 2013 07:59:34 X1.7 11.6·1011 5.3 5.3 55/45

23 Oct 2012 03:17:22 X1.8 12.0·1011 5.1 5.2 53/47

25 Oct 2013 15:01:14 X2.1 12.3·1011 5.2 5.4 50/50

calculate the resulting differential densities at given precip-
itation deph. This approach allows us to provide quick es-
timations of the contribution of self-induced electric field in
the electron beam precipitation and to derive their resulting
HXR emission produced by both precipitating end returning
electrons forming the electric circuit in solar flares (Zharkova
& Gordovskyy 2006; Siversky & Zharkova 2009).

The HXR intensities are compared for the following so-
lutions: the updated CE for Coulomb collisions (Dobran-
skis & Zharkova 2015), the updated CE for mixed Coulomb
collisions & ohmic energy losses (presented here) and the
numerical FP solution for Coulomb collisions, ohmic losses
and pitch angle scattering (Siversky & Zharkova 2009). In
general, HXR bremsstrahlung emission produced by precip-
itating beam electrons is directed mostly towards the pho-
tosphere. Thus, it is considered here to be fully reflected
back to the corona (a full albedo effect) (Massone et al.
2004), while the emission of returning electrons is produced
directly towards the observer in the top of the atmosphere.

In general, the MEL solutions for differential densities
and HXR emission produced by both precipitating and re-
turning electrons can be summarised in the items as follows.

(i) Differential densities (DDs) of precipitating electrons
derived from the MEL semi-analytical solutions become
much more flattened at lower energies below 10-30 keV com-
pared to the purely collisional case. This flattening becomes
stronger with an increasing precipitation depth turning into
a positive slope at greater precipitation depths in the chro-
mosphere, producing, thus, a DD distribution with maxi-
mum, which shifts towards higher energies with the increase
of a column depth.

(ii) From the other hand, the resulting differential den-
sities of combined precipitating and returning electrons are
higher at every precipitation depth than those for a pure
collisional case. This increases the resulting differential den-
sity of beam electrons at a given precipitation depth, which
contributes to the HXR bremsstrahlung emission produced
towards the top of a flaring atmosphere.

(iii) An overall increase of the differential density of pre-
cipitating plus returning electrons is more significant for
powerful electron beams, as they induce a stronger elec-
tric field, and a larger number of returning beam electrons.
Hence, the inclusion of mixed energy losses into the semi-
analytical approach proposed here allows us to estimate the
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effects of self-induced electric field on electron beam precip-
itation into flaring atmosphere without running computer-
expensive numerical Fokker-Planck simulations.

(iv) A fraction of precipitating and returning electrons
is shown to be strongly dependent on the initial energy
flux, spectral indices and pitch angle dispersion of electron
beam at injection. Weak electron beams are found to have
the highest fraction of precipitating electrons being slightly
lower for softer electron beams and higher for harder ones.
While electron beams with moderate and strong initial en-
ergy fluxes there are more electrons accelerated backwards
the corona, resulting in a lower fraction of precipitating elec-
trons.

(v) Moreover, the fraction of returning electrons is found
to be dependent on a pitch angle dispersion of the beam at
its injection on the top boundary. For mildly directed beams
(with a pitch angle dispersion of 0.2) an increased number of
returning electrons (43-57%) is found at the very top precip-
itation depths, compared to a much smaller number (¡20%)
derived for the narrower beams with a smaller pitch angle
dispersion of 0.02.

(vi) Simultaneous consideration of both collisional and
ohmic energy losses combining the HXR emission produced
by precipitating and returning electrons, reveals a notice-
able flattening of their HXR intensity spectra at lower ener-
gies (<80 keV). This flattenning is stronger for beams with
higher initial energy fluxes, or for more powerful flares.

(vii) Spectral fitting of the HXR emission observed by
RHESSI for 9 flares providing the closest fit of the simu-
lated curves to the observed HXR photon spectra helps one
to evaluate a fraction of returning electrons versus precipi-
tating ones in these flares shown in Table 5.

(viii) In addition, spectral fitting of the HXR emission
found from the MEL approach is very close to the observed
HXR photon spectra and with those derived from FP ap-
proach within 0.1-0.2.

(ix) As discussed in Introduction, the number of return-
ing electrons can be even further enhanced by a magnetic
mirroring, not considered in the current model, while domi-
nating at lower atmospheric depths where the magnetic con-
vergence and magnitude are the highest. This enhancement
can noticeably modify the resulting HXR and MW emission
for flares with visibly converging magnetic loops that needs
to be considered in the future interpretation.

Therefore, the proposed MEL approach can be utilized
at the initial investigation stage of spectral fitting provid-
ing an opportunity to account simultaneously for both col-
lisional and ohmic losses without lengthy numerical Fokker-
Planck simulations. The IDL code implementing the pro-
posed MEL approach can be incorporated into the RHESSI
Solar Software for a quicker fit at the initial data processing
stage.
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