
���������	
���
�����	��

�	�
�	�����
�	�����	�
����	���
������
���������
����
	����
�������
�	���!�
�������
��
����
"���
�
�����#$%&'(�����)��*	�+���"	����,��	����-��	����#�*���(�����.��	�	�����������
�
-����	��
/�-����"��	�-0��...��������10�""0�&&213%+&&21140������$&3'+4243�

5���	�����,�����5.��/�.6

�����

 �	� �)��	�� � 7
� � ��7���
�� � ���� � ���������	
 � ��
��� � �	��� � ���"�88���������	
+���0"�	���+
����	�-0��-8	�8"�	��82$9928

���������	
���)��	�,��
���)��"�����������	
���
�����	���#���(�����
�����������
�����
�����)��	�,:����
�������"��0���",�	-���;�
������
���	-��������	�����������
����
	����,����
	��)	��
��
�����#�(�
��8����������",�	-����7���0� ��	�-����"	���������� 	�����
�����"��������
�	�"�
,�����"��������
���-)�������	���"
��	��	��
�,�����
�������	�������"����
����
�������
����,�����
�	��
���������+���+"���	��"��"����7	������"�	���"��	��	��������
�-��"��)	������
��������
�	���
���������	��	�-�
"�	����
	���
��-)���
��7���
��
��,"��	���
��8���������������	-	�
����
�
�
�
"
-0� ����������������������
�-��	��
�,�7
,0�/����	��������������������������	
��,�	��
�, �
����
�������	���7	����������
��"��	��	�����������",�	-��������0�� �������"��	�,�	��
)
	�
������	���
���"�88���0���������	
0
�0��8"��� �	���	�0����� �

 �	� �������� ��
,��	��� � ����� �� � �	�
�� �"���	����)��	����� � ��� ��
��� �
����
������
��

)
	�
������	��	��
�����
���7	���"���	����"��	�	�0� ���
��
��8����	����������"���	����)��	���
��������
�����"�
��)	�	�����"���	���:��7��	��#
�������	"�	����
,������	��0(

������������������������

http://nrl.northumbria.ac.uk/policies.html

SPECIAL SECTION ON MOBILE EDGE COMPUTING AND MOBILE
CLOUD COMPUTING: ADDRESSING HETEROGENEITY AND
ENERGY ISSUES OF COMPUTE AND NETWORK RESOURCES

Received May 4, 2019, accepted May 26, 2019, date of publication June 26, 2019, date of current version August 31, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2924958

A Novel Bio-Inspired Hybrid Algorithm (NBIHA)
for Efficient Resource Management in
Fog Computing
HINA RAFIQUE1, MUNAM ALI SHAH 1, SAIF UL ISLAM 2, TAHIR MAQSOOD3,
SULEMAN KHAN 4, AND CARSTEN MAPLE 5
1Department of Computer Science, COMSATS University Islamabad, Islamabad 44550, Pakistan
2Department of Computer Science, Dr. A. Q. Khan Institute of Computer Science and Information Technology, Rawalpindi 47320, Pakistan
3Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
4Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K.
5Warwick Manufacturing Group, University of Warwick, Coventry CV4 7AL, U.K.

Corresponding author: Saif ul Islam (sai�u2004@gmail.com)

This work was supported in part by the Alan Turing Institute under EPSRC Grant EP/N510129/1.

ABSTRACT Fog computing has emerged as a revolutionary paradigm to serve the massive data generated in
the Internet of Things (IoT) environments. It can be considered a derivative of cloud computing that provides
cloud-like services at the edge of the network. As such, it helps address the, often signi�cant, issue of delays
encountered when using cloud systems for the IoT. According to the literature, inef�cient scheduling of user
tasks in fog computing can actually result in higher delays than cloud computing. Hence, the real bene�ts of
fog computing can only be obtained by applying effective job scheduling strategies. In fact, task scheduling
is an NP-hard problem and requires optimal and ef�cient techniques to address issues of latency, response
time, and the ef�cient resource utilization of resources available at the edge of the network. Given this,
we propose a novel bio-inspired hybrid algorithm (NBIHA) which is a hybrid of modi�ed particle swarm
optimization (MPSO) and modi�ed cat swarm optimization (MCSO). In the proposed scheme, the MPSO
is used to schedule the tasks among fog devices and the hybrid of the MPSO and MCSO is used to manage
resources at the fog device level. In the proposed approach, the resources are assigned and managed on
the basis of the demand of incoming requests. The main objective of the proposed work is to reduce the
average response time and to optimize resource utilization by ef�ciently scheduling the tasks and managing
the fog resources available. The simulations are performed using iFogSim. The evaluation results show that
the proposed approach (NBIHA) shows promising results in terms of energy consumption, execution time,
and average response time in comparison to the state-of-the-art scheduling techniques.

INDEX TERMS Cloud computing, edge computing, fog computing, bio-inspired algorithms, task schedul-
ing, resource management.

I. INTRODUCTION
Fog computing is a type of distributed computing which
utilizes units between cloud data centers and IoT devices
in a three-tier architecture, providing storage and process-
ing services closer to end devices [1]. Fog computing uti-
lizes and array of networking components, proxy servers,
switches, setup boxes, base stations, and routers. These com-

The associate editor coordinating the review of this manuscript and
approving it for publication was Junaid Shuja.

ponents have their own respective computing, storage, and
networking services. The term fog computing was initially
introduced by Cisco [2] as an extension of cloud computing
to overcome limitations of cloud computing. Fog comput-
ing systems are being increasingly developed as ef�cient
real-time systems in areas such as health care, augmented
reality and gaming [3]�[5].

It has not been the intention that fog computing should
replace cloud computing, but rather to be used in conjunction
with more central cloud units to reduce delay, provide fast

115760 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-4037-3405
https://orcid.org/0000-0002-9546-4195
https://orcid.org/0000-0002-5725-6184
https://orcid.org/0000-0002-4715-212X

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

computing and reduce the cost of processing [6]. Fog nodes
can be classi�ed into two types: resource-poor devices such
as routers, set-top-units, wireless access points (WAP) [7];
and resource-rich machines such as cloudlets, that can be
considered a small scale version of cloud data centers, giving
massive processing to mobile devices with low latency [8].
The basic architecture of fog and cloud computing is illus-
trated in Fig 1.

FIGURE 1. Cloud and fog computing architecture.

Driven by technological development by the academic
and industrial communities, society is increasingly accepting
massive connectivity of everything, everywhere. Academics
and industry are advancing IoT-based smart X solutions -
smart home, smart cities, smart transportation, smart mili-
tary operations, smart metering and wearable computing [9].
As the number of IoT applications and implementations
increase, so too has the attention of researchers.

As the number of IoT devices increases, there is a
signi�cant increase in energy consumption and degrada-
tion in performance [10]. Moreover, the high latency issues
arising in the cloud-IoT paradigm makes it less practical
for delay-sensitive IoT applications. As such, energy and
performance-aware computational and storage services have
become critical [11]. In the fog computing paradigm, routers
behave as servers that provide the resources for the fog
services [8], [12], [13]. Routers enhance the computation and
storage capacity that can be utilized by computing nodes.
Many IoT applications that deal with the real-time scenarios
are moving to edge computing nodes [11], [12], [14].

Ef�cient resource management in IoT-based fog com-
puting environment is a signi�cant challenge due to the
dynamic nature of bandwidth, storage, computation, and
latency of end devices. For example, we can keep records
of on-duty ambulances (such as capabilities, location and
so forth) in a connected vehicle scenario and on the other
hand, we can also control smart traf�c lights to route
the ambulance in the case of an emergency. With such
demands for computation and speed, it is important to manage
resources to ensure quality of service (QoS) requirements.
Ottenwälder et al. [15] proposes the placement and migration

method, named MigCEP, for the management of resources in
both cloud and fog. The reduced network utilization and end-
to-end latency restrictions are ensured by complete planning
of operator mitigation. Application-aware provisioning helps
fog computing to be effectively used with IoT for mobile
crowdsourcing or sensing.

Since extending the cloud to the network edge, ef�cient
resource management has become an increasingly challeng-
ing task [16]. As such, there is a dire need to propose and
develop energy-aware and performance-oriented fog resource
management strategies. In this context, we have proposed
a novel bio-inspired hybrid algorithm scheme (NBIHA)
for ef�cient resource management in fog computing. This
approach is a hybrid of two state-of-the-art bio-inspired algo-
rithms. The proposed approach schedules the tasks and man-
ages the resources to achieve ef�cient resource utilization and
improved performance. According to the proposed approach,
the scheduler �nds the best match of fog devices for an
incoming task depending on its demand of CPU time and
memory, and allocates it the resources accordingly. Only
if it cannot identify any appropriate resource from the fog
devices does it send a task to cloud-based resources. The main
contributions of this paper are summarized below:
� The proposition of a novel bio-inspired hybrid algorithm

that combines modi�ed particle swarm optimization
(MPSO) and modi�ed cat swarm optimization (MCSO)

� The proposed algorithm has two major components -
task scheduling and resource allocation in fog comput-
ing to optimize the resource utilization and to minimize
the response time and processing cost

� The proposed approach is evaluated using iFogSim
simulator and is validated through a comparison with
state-of-the-art resource management algorithms. The
results verify the effectiveness of the proposed approach
in terms of energy consumption, processing cost and
response time.

The rest of the paper is organized as follows: Section II
describes the related work while Section III explains the
system architecture and proposed methodology of the system
along with the problem formulation. Section IV presents the
algorithms of the proposed technique. Section V de�nes the
performance parameters and evaluation metrics which are
used for the comparison. Section VI describes the results
of the proposed technique. Finally, in Section VII, the
conclusion and future work are presented.

II. RELATED WORK
In [13], the Bee Life Algorithm (BLA) is used to assign a
bag of jobs to fog or edge nodes that are situated at the
edge of the network. It focuses on the reduction of execu-
tion time and the memory required by the overall mobile
tasks executed on the fog nodes. This time and cost-aware
evolutionary scheduling algorithm is used to schedule tasks
on fog and cloud resources according to the requirement of
tasks, maintaining the trade-off between cost of execution and

VOLUME 7, 2019 115761

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

time of execution. The paper mainly focuses on resolving the
scheduling problem for bag of tasks (BoT) applications in a
hybrid cloud-fog computing environment. Time�Cost aware
Scheduling (TCaS) is an evolutionary algorithm proposed by
Binh et al [17], whose performance is evaluated with different
data-sets of tasks on fog and cloud devices. Its optimization
criteria provide a trade-off between time and cost and user
satisfaction. A three-layered model is presented to optimally
allocate resources in cloud-fog environments. The system is
divided into three parts: the client layer, the fog layer; and the
cloud layer. The algorithm attempts to allocate tasks to the
client and fog layer, with the remaining requirements accom-
modated through cloud resources. The factors considered are
overall response time, processing time and cost of data-center.
The limitation of this model is that no run time allocation
of resources is provided, and it allocates resources before
processing.

Gudetti et al. [18], propose a model comprising two
components - job allocation to virtual machines (VMs) and
allocation/management of fog resources. Two bio-inspired
algorithms are utilized - MPSO for job allocation and MCSO
for resource assignment/allocation and management. The
method provides improved utilization of available resources,
reliability and average response time, and improves all
criteria for cloud-based applications. This model is only
applicable in cloud environments. A recent application for
fog computing environments was the development of a
fog computing supported medical cyber-physical system
(FCMCPS), presented in [19]. In this new model a
cost-ef�cient solution for managing base station links, task
division, and VM placement was proposed. The issue is
considered to be a mixed-integer nonlinear programming
(MINLP) problem for base station association, VM allocation
and task assignment. A MILP technique is used, reducing the
complexity of the problem. A two-phased linear program-
ming based heuristic algorithm was developed to solve the
problem. For a survey of scheduling techniques employed to
improve results performance in terms of processing, time, and
resource utilization for cloud systems see [31].

Deng et al. [20] have developed a framework to explore
the problem of imbalance between consumed power and the
delay of workload distribution in cloud-fog environments.
This framework decomposes the into three small problems
of respective subsystems to provide an optimized solution of
communication latency in the system. These problems are
then solved by using the Hungarian method. Simulations have
been conducted to show reduced communication latency in
fog environments, in contrast to cloud environments. How-
ever, a shortcoming of this system is that it performs opti-
mization in a centralized manner, rather than a distributed
manner. This makes it more dif�cult to use in fog infrastruc-
tures where the system is complex and information exchange
and communication overheads are high. Oueis et al, [21],
propose a method that involves forming clusters of resources
for load balancing for fog computing environments. The
method allocates resources to meet the expectations of user

requests and attempts to minimize power consumption and
process complexity. The algorithm uses a two-step method to
allocate resources. In the �rst stage, resources are distributed
to smart cells by the use of a speci�ed scheduling rule,
whereas in the second stage clusters are formed to handle
unful�lled requests. In this system, the user can change met-
rics, scheduling rules, and clustering objectives according
to the requirement of the speci�c application and network.
While this system has bene�ts, it is very dif�cult to use in
complex fog infrastructure.

The method proposed by Ningning et al. [23], employs
graph theory concepts with fog characteristics to construct
a model for load balancing. The method uses a cloud atom-
ization process to convert VMs into different physical nodes.
For this purpose, it uses a speci�ed amount of resources and
clustering division. Tasks or jobs are allocated to single or
multiple VM nodes according to the demand of resources
required by the task. This model does not allow dynamic load
balancing.

In Table 1, we have summarized the key characteristics
of existing techniques, along with their limitations and rel-
evant architecture. The problem at hand is to provide an
intelligent solution to task scheduling, load balancing, and
resource management in fog-cloud computing environments.
The main difference between the present work and previous
work is that we are combining two algorithms to achieve two
goals, one is to schedule the tasks and the other is to manage
the resources to improve the response time and resource
utilization. The rationale of using a modi�ed hybrid algo-
rithm is that we are scheduling tasks and managing resources
concurrently. The literature shows that in cloud comput-
ing environments MPSO has been successfully employed to
improve resource utilization [29], whereas MCSO has been
used to enhance and improves the search ef�ciency within
the search space as we are �nding a best-�t resource for task
processing [30].

III. SYSTEM ARCHITECTURE
In this paper, we consider a fog-cloud system which consists
of fog and cloud processing nodes. Our system architecture is
comprised of three layers - client module, scheduler, and fog
devices and cloud data centers. The operation of our proposed
NBIHA architecture is that all the client requests are received
by the scheduler. The scheduler performs an optimization
algorithm to �nd the best resource match for jobs based
upon CPU and memory demand of the tasks. It schedules the
task using the MPSO algorithm approach to �nd the global
best (GB) and to perform load balancing before the hybrid
MPSO-MCSO algorithm is used to manage resources based
on the �tness function. While a number of simulators are
available, we have implemented our system model using the
iFogSim simulator in order to evaluate the performance of
our proposed approach. The evaluation has been discussed
in next sections. Fig 2 shows the model of our proposed
system.

115762 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

TABLE 1. Summary of literature review findings.

In Fig 3, we have shown the hierarchical system model of
proposed approach.

A. PROPOSED METHODOLOGY
The proposed methodology presents a novel bio-inspired
hybrid algorithm (NBIHA) for job or task assignment and
resource management. In our work, we are focusing on the
task assignment of incoming task over fog devices using
bio-inspired MPSO algorithm. In this way, we will get a
better task assignment with respect to demand for the job
and average response time of fog devices. For management
of fog devices with respect to CPU and memory demand

of a task we have used a hybrid scheme composed of two
algorithms, i.e., MPSO and MCSO. If fog devices are not
available, tasks will use resources available in the cloud data
centers.

As the number of IoT users increases, and technology at the
edge improves, there is a greater requirement to make optimal
use of resources to ensure adequate service delivery. The
delivery of services requires a combination of cloud and fog
resources and dynamically allocation remains a challenge.
We have based our approach on for resources utilization on
MPSO, as it has shown promising results for cloud-based
systems [29]. For resource management we have based our

VOLUME 7, 2019 115763

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

FIGURE 2. NBIHA system model.

FIGURE 3. NBIHA system model.

solution on a modi�ed form of MCSO since it has previously
shown to be effective in this regard [30].

B. PROBLEM FORMULATION
We designed a system for task load balancing and resource
management in fog-cloud computing environments. We
describe a task as a method that de�nes a service demand
made by a user that could take the form of a mobile user,
web user, or other Internet users. Incoming requests, i.e.
tasks ti ft1; t2; t3; t4 : : : ; tng are to be scheduled on available

fog devices, i.e. fk ff1; f2; f3; f4 : : : ; fmg and cloud resources.
Our proposed approach uses MPSO to schedule tasks and to
balance the load by selecting the best �t fog and cloud devices
for processing of requests. After scheduling tasks, we will
�nd the average response time of the fog nodes by using the
following equation (1).

AVT D t2[
mX

xD1

FD(x)]� t1[
mX

xD1

FD(x)] (1)

115764 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

To �nd the �tness value of the best �t we have used following
formula

FV D
(R)

P m
FDD0 FD(k)

P n
xD1(RD)

(2)

We have used equation (2) to calculate the resource demand
of the task.

C. ALGORITHMS
In this section, we will brie�y explain the algorithms we have
used in our proposed approach and after that, we will explain
how we have used NBIHA to resolve our problem. In [29], it
is mentioned that many researchers have used PSO to solve
scheduling problems in cloud computing environments. We
can consider fog computing to be a derivative of cloud com-
puting and so use the best performing meta-heuristic tech-
niques as a basis for solving issues in the fog environment.

1) ILLUSTRATION OF MPSO ALGORITHM
In this algorithm, particles are considered where each particle
has two properties - position fxi1; xi2; xi3 : : : ; xing and the
velocity of the particle fvi1; vi2; vi3 : : : ; ving in the x axis. In
this process, each particle has its personal (local) best position
identi�ed by itself, whereas the global best is found among
all of the particles. Fig 4 illustrates the MPSO algorithm. The
MPSO has following stepsV

1) Initiate each particle with position and velocity.
2) Evaluate the �tness value of each particle using �tness

function.
3) Compare particle with the largest �tness value cal-

culated in above step, initiate its position and update
value; and compare this particle with the smallest (opti-
mal) �tness value and check whether its new position
is suitable, if yes, change and update its personal posi-
tion (pbest), otherwise, assign a new position to this
particle randomly in its surroundings with radius r and
then update the position and velocity of other particles
according to the �tness function;

4) Now compare each particle’s current �tness value with
its personal best (pbest), if the current �tness value
is better, then change its �tness value and personal
best (pbest) to the new best.

5) Now �nd the best particle among the group with the
best �tness value, and compare the current �tness value
and the �tness value of global best (gbest), if yes, then
renew its �tness value and global best gbest) with the
current position;

6) Check the set criteria (�tness function) to �nd the opti-
mal solution, if it has been achieved, end the iteration
of the algorithm; otherwise, return to step 3) [32], [33]

The Fig 4 shows the activity of the MPSO.

2) ILLUSTRATION OF MCSO ALGORITHM
We employ the seeking (or tracing) mode of MCSO in our
algorithm. In the seeking mode of MCSO, the condition of
the cat is depicted as resting, looking and seeking for the

FIGURE 4. Data flow of MPSO.

position to make next movement. This mode has four basic
components: seeking for memory pool (SMP), seeking for
a range of the dimension (SRD), count of measurement to
change (CDC), and self-position consideration (SPC). SMP
is used to specify the memory pool for each in which it will
seek for the next position. The cat picks up a point from the
SMP by following the below-mentioned steps. SRD is used
to state the proportion of the dimensions. In this mode, when
a dimension has changed the difference between both values
would not be out of the range of the SRD. CDC stores the
number of dimensions that can be changed. These are the
essential elements of the seeking mode. SPC has knowledge
of the point where the cat stands, and identi�es whether it is
possible to move to a particular point; it is a Boolean variable.
Whether SPC is true or false, it does not affect SMP [34], [35].

VOLUME 7, 2019 115765

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

The function of seeking mode is depicted in 5 steps shown as
belowV

1) Make n copies of the present position of cati, where
n D SMP. In the start consider that the estimation of
SPC is valid, let nD (SMP-1), by then hold the present
position as one of the candidates.

2) For each copy, as shown by CDC, randomly add or
remove SRD percent of the present characteristics and
replace the old ones.

3) Compute the �tness value (FS) of all candidate points.
4) If all �tness values are not actually equivalent, deter-

mine the choosing possibility of every candidate point
by condition mentioned in equation(3). Generally,
the probability is considered as 1.

5) Randomly pick the next point to move to from the
current points and change the position of cat_i.

Pk D
jFSk � FSaj

FSmax � FSmin
where0 < k < n (3)

For minimum solution FS_aDFS_max

IV. NBIHA FOR FOG COMPUTING JOB SCHEDULING AND
RESOURCE MANAGEMENT
A number of modi�ed particle swarm optimization (MPSO)
algorithms have been proposed since the derivation of the
original particle swarm optimization (PSO) algorithm. In our
approach, we will use modi�cations to the PSO to resolve
task allocation and load balancing in a cloud-fog computing
environment.

A. TASK SCHEDULING AND LOAD BALANCING
In our Algorithm 1, we have used MPSO for task scheduling
and allocation. MPSO is used to �nd the best �t fog device
for processing of incoming tasks. In this Algorithm, we have
created a resource pool in which all the resources are saved.
We have fog devices such as F D ff1; f2; f3; f4 : : : ; fjg and
there are incoming requests X D fx1; x2; x3; x4 : : : ; xng for
processing. Each cluster �nds the personal, or local, best
(LB), which is considered as the least loaded fog device. From
these least-loaded fog devices, the smallest is considered to be
the global best (GB) and is assigned to process the requested
task. If there is no match found, the task is sent to the cloud
for processing.

B. RESOURCE ALLOCATION AND MANAGEMENT
1) RESOURCE ALLOCATION AND MANAGEMENT
USING MPSO
In Algorithm 2, we have used the MPSO algorithm to allocate
and manage fog devices. In this algorithm, we have created
a resource pool in which all the resources are saved. We
have fog devices de�ned by F and incoming requests for
processing de�ned by X. Initially, resources are distributed
based on the demand of the tasks. Subsequently, from the
remaining resources, we �nd the two best values (best�tres1
and best�tres2). Neededres contains the required resources

Algorithm 1 Load Balancing by Scheduling Tasks Using
MPSO
Result:No of executed tasks
initialization:
count 0
PersonalBest(lbz) 0
GlobalBest(gb) 0
F f 1; f 2; f 3; : : : ; fj
Clusters Cz c1; c2; c3; : : : ; cz
Clustersize j=Cz

for incoming requests x1; x2; x3; : : : ; xn do
for Cz D c1; c2; c3; : : : ; cz do

Cz F(leastloaded)
Assignlbz Cz

end
Assign gb D leastlbz
Allocate next task x F(gb)
if nextallocation DD lastusedGB then

goto step 3(leastloadedF)
else

goto step 7
end

end
for all unallocated tasks x1; x2; x3; xn do

Assign to Cloud
end

for incoming requests. We compare Neededres with best-
�tres1 - if it �ts we assign it for processing, otherwise we
compare with best�tres2. If this matches we send a request
for processing, otherwise the resources are sent to respool and
requests are sent to the cloud for processing. In Algorithm 2,
we have used the exact matches to identify the resource for
processing. This has a drawback: if it does not �nd exact best
�t match then it sends requests to the cloud, which results in
an increase in the computational overhead.

2) RESOURCE ALLOCATION AND MANAGEMENT
USING NBIHA
In Algorithm 3, we propose the NBIHA approach to allo-
cate and manage fog devices. This algorithm will overcome
the drawbacks of the MPSO algorithm. We have created
a resource pool in which all the resources are saved, have
fog devices de�ned in F and incoming requests for process-
ing given in X. We begin with resources distributed based
on the demand of the tasks, and then, from the remaining
resources, the two best values (best�tres1 and best�tres2)
are identi�ed. Neededres contains the required resources for
incoming requests. We now use the seeking memory pool of
MCSO to store resources, with the exception of best�tres1
and best�tres2. Four distinct types of memory pools are used
for the purpose of using the MCSO in seeking mode. Based
on the SMP, the cat scans for the accurate counterpart for

115766 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

FIGURE 5. Sequence diagram of NBIHA.

future resource demand of the request made by the task. In
the event that there is a match, at that point the status is
retained within the scope SRD. If SRD has another update,
at that point the fog device starts executing the assignment
and this status is used to change the CDC. Each update of
SMP of MCSO effects a change in position of Cats; this is
maintained in SPC. In MCSO, the result of the seeking mode
is used as input to the next mode and we then use the method
of Algorithm 2. In the hybrid algorithm the upper bounds of
the best�tres1, best�tres2, and best�tres3 are checked. After
assigning processing resources to tasks, extra resources are
sent to the fog resource pool. This approach will remove the
drawbacks of an exact match that results in the additional
computational overhead. It also improves the execution time
and average response time of the fog nodes.

Fig 5 shows the operation of NBIHA in cloud-fog com-
puting environments. The user sends requests, which are
collected by the fog devices. The fog broker manages the
fog devices as well as the requests generated by the user.
The fog broker divides the requests into tuples and schedules

tasks and manages fog devices based on the MPSO algorithm.
The tuples are then sent to fog devices and cloud devices
as identi�ed. After processing, the fog broker checks the
completion of the task, compiles the results and sends these
back to the user through the fog devices.

V. PERFORMANCE EVALUATION
Extensive simulations have been conducted using iFogSim
in a cloud-fog environment to assess the performance of our
NBIHA approach. Cloud and fog nodes have varied process-
ing power and usage cost. We assumed that each fog node
or device has its own processing limit (estimated by MIPS -
million instruction per second), alongside CPU, memory, and
transmission capacity utilization cost. There are 15 process-
ing nodes in the fog framework, with the speci�cations as
shown in Table 2. The unit of cost is given as Grid dollars,
often used in simulations, as a replacement for real money.
In the fog layer, fog nodes have restricted processing power,
for example, switches, doors, workstations, or PCs. In the
cloud layer, servers or virtual machines in elite server farms,

VOLUME 7, 2019 115767

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

Algorithm 2 Resource Management and Allocation Using
MPSO Algorithm
Result:No of executed tasks
initialization:
Respool, Neededres, minres D 2 sumres 0
Fd f 1; f 2; f 3; :; fj
C cloud
Clusters Cz c1; c2; c3; ; cz
Clustersize j=Cz

for incoming requests x1; x2; x3; : : : ; xn do
Resdemand totalresourcesrequiredbyrequests
NeededRes resourcesrequiredbyeachrequest
for F f 1; f 2; f 3; fj do

sumres sumresC Resdemand

end
if start then

Respool Respool�sumres

else
for all Cluster size, Cz c1; c2; c3; : : : ; cz do

best�tres1 �rstbestcz
best�tres2 secondbestcz

end
for all Fd D fd1; fd2; fd3; :; fdj do

for all Cluster size, Cz D c1; c2; c3; : : : ; cz do
if best�tres1 DD Neededres[] then

Fd uses excessres1
else

Respool Respool � Neededres[]

end
if best�tres2 DD Neededres[] then

Fd uses excessres2
else

Respool Respool � Neededres[]

end
end

end
end
Respool Respool C leftNeededres[]

end
for all unallocated tasks x1; x2; x3; xn do

Assign to Cloud
end

are in charge of taking care of requests. In this manner, the
preparation rate of cloud nodes is much quicker than fog
nodes. Interestingly, the expense of utilizing resources in the
cloud is more costly than in the fog.

The fog framework is responsible for the execution of all
incoming requests from the clients. Each request is divided
into number of task tuples, which are decomposed and eval-
uated based upon the processing that they required. Each

Algorithm 3 Resource Management and Allocation Using
NBIHA
Result:No of executed tasks
initialization:
Respool, Neededres, minres D 2 sumres 0
Fd f 1; f 2; f 3; :; fj
C cloud
Clusters Cz c1; c2; c3; ; cz
Clustersize j=Cz

for incoming requests x1; x2; x3; : : : ; xn do
Resdemand totalresourcesrequiredbyrequests
NeededRes resourcesrequiredbyeachrequest
for Fd f 1; f 2; f 3; fj do

sumres sumresC Resdemand

end
if start then

Respool Respool�sumres

else
for all Cluster size, Cz c1; c2; c3; : : : ; cz do

best�tres1 �rstbestofcz
best�tres2 secondbestofcz
best�tres3[] except�rstand secondbestofcz

end
for all Fd D fd1; fd2; fd3; :; fdj do

for all Cluster size, Cz D c1; c2; c3; : : : ; cz do
if best�tres1 >D Neededres[] then

Fd uses excessres1
else

Respool Respool � Neededres[]

end
if best�tres2 >D Neededres[] then

Fd uses excessres2
else

Respool Respool � Neededres[]

end
while size of(excessres3[]) do

if best�tres3 >D Neededres[] then
Fd uses excessres3

else
Respool Respool �Neededres[]

end
end

end
end

end
Respool Respool C leftNeededres[]

end
for all unallocated tasks x1; x2; x3; xn do

Assign to Cloud
end

115768 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

TABLE 2. Fog simulation environment parameters.

TABLE 3. Properties of incoming requests.

TABLE 4. Characteristics of simulation setup.

task has a number of characteristics such as the memory
required, input document size, and output. We have tested
using between 20 and 60 tasks evaluate our proposed NBIHA
approach. The characteristics of the tasks are presented in
Table 3. With randomness, the simulations may cover dif-
ferent situations in light of the fact that numerous kinds of
requests are made, some of them require a large measure of
preparation while others need more memory or data transfer
capacity, and so forth. There are issues in simulating fog and
edge computing environments due to the of diverse nature
of sensors and fog devices [36]. The settings of the experi-
mental environment are shown in Table 4. The simulations
are created in Java with Eclipse editorial manager, and uti-
lizing iFogSim [37], [38]. iFogSim is selected because it is
dependent on CloudSim, a cloud computing simulator that
has been widely used and approved in various experiments to
perform simulations. In Fig 6, we have shown the topology of
our system which has been created using iFogSim to evaluate
the performance of our system.

A. EVALUATION METRICS
We believe that by scheduling task assignment and resource
management will improve resource utilization and average
response time and will evaluate on such metrics. Our null
hypothesis and alternate hypothesis are given below:
� H0: There will be no difference in resource utilization

and average response time of the resources available
in the cloud-fog system after scheduling and managing
resources using bio-inspired heuristic algorithms.

� H1: The system having been scheduled using NBIHA
will have better resource utilization and average
response time of the resource.

VI. RESULTS
Results of our proposed approach are analyzed with respect
to: resource utilization; average response time; energy con-
sumption; and execution time. Moreover, the proposed algo-
rithm is compared with benchmark algorithms for scheduling
such as shortest job �rst (SJF), �rst come �rst served (FCFS).
We have also compared our proposed approach with particle
swarm optimization (PSO) meta-heuristic approach in the
case of resource management and allocation to fog nodes.

A. LOAD BALANCING BY USING TASK SCHEDULING
As mentioned earlier, our work is divided into two parts,
load balancing and, resource management. To accomplish
the �rst goal, we have used the proposed MPSO algorithm
for task scheduling which will, in fact, balance the load
of fog resources. In this section, we have compared our
results with scheduling algorithms like the SJF and FCFS.
We have used these algorithms for comparison because these
are benchmark algorithms for scheduling. Figure 7 shows that
the average response time of the proposed MPSO approach
is smaller than all of the other schemes. Using FCFS, the
incoming requests have to wait if the resources are busy since
it allocates resources in the order of arrival whereas using SJF
large incoming requests have to wait longer since it prioritizes
processing shortest jobs �rst. In our proposed algorithm the
tasks are scheduled with respect to the resource demand.
It balances the load as resources are utilized with respect
to the demands of the incoming requests. We can see in
Fig 7, that MPSO uses all fog nodes equally whereas the other
two algorithms use a smaller number of resources thereby
increasing the load. We have not considered MCSO and the
hybrid approach for scheduling since they take more time.
We have evaluated our task scheduling and load balancing
by considering resource utilization when we use the MPSO
which ef�ciently schedules the tasks and increases the maxi-
mum and provides approximately equal utilization of all fog
nodes.

In Figure 7 we also see that there is �uctuation in resource
utilization while using different approaches. Since FCFS allo-
cates resources on the basis of arrival of the demands of
incoming requests, there is an uneven utilization of resources.
Conversely, MPSO �nds the best �t using global best and bal-
ances the load. For this reason resource utilization is evenly
divided on all the fog nodes.

B. RESOURCE ALLOCATION AND MANAGEMENT
In Fig 8, the results of experimentation with a set of 10
and 20 fog devices in groups, with 60 incoming tasks. After
task scheduling using MPSO, we use the MCSO approach to
manage the resources. In this best�tres3 will be compared for
the future demand of the tasks. In Fig 8, we can see the results
for MPSO, SJF, FCFS and the hybrid approach. We see that

VOLUME 7, 2019 115769

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

FIGURE 6. Fog computing environment topology designed in iFogSim.

FIGURE 7. Resource utilization in terms of tasks performed by each fog
device.

the hybrid approach provides reasonable results with respect
to average response time.

C. ENERGY CONSUMPTION
In Fig 9, we have presented the results of experimentation
using our approach and using FCFS and SJF with respect to
the energy consumption of fog devices. In Fig 9, we have con-
sidered 24 fog devices to evaluate the energy consumption
of resources by using NBIHA, FCFS and SJF. Energy con-
sumption in the case of NBIHA is lower than the other two
approaches. It can be seen in Fig 9 that due to load balancing,
all nodes are approximately equally utilized that is why the
energy consumption in case of the proposed approach is lower

FIGURE 8. Average response time of algorithms on the basis of task
completion time.

than the other two approaches. For our approach, the �tness
value is determined on the basis of which resource is allocated
to the job for processing. The energy consumption is almost
equal because in the �rst iteration of our proposed approach
it provides resources to the incoming requests and after that
it manages the load of resources, rather than simply in order
of arrival or prioritizing shortest jobs, as in FCFS and SJF,
respectively.

In Fig 10, we have used sets of 5, 10, 15, and 20 fog devices
and evaluated the performance of our proposed approach with
respect to energy consumption. It can be seen that when
we increase the number of fog devices the usage of energy

115770 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

FIGURE 9. Energy consumption of algorithms with respect to each fog
device.

FIGURE 10. Energy consumption analysis of algorithms on the basis
of 5,10,15 and 20 fog devices.

increase in all cases. The energy consumption increases with
the increase in fog devices because the more we add fog
devices to the system the energy of switching and processing
increases. When our approach is compared to FCFS and SJF,
we see that NBIHA has a lower energy consumption level in
all sets of fog devices.

D. EXECUTION TIME ANALYSIS
In Fig 11, we consider the best, average and worst case results
of the four algorithms. We have explored different combina-
tions regarding the tasks and fog devices with state- of-the-art
conventional scheduling algorithms and NBIHA. In Fig 11,
the worst scenario of execution time for the proposed MPSO
and NBIHA is an unusual case where the resource match
never occurs with the incoming requests. Different resources
are used by the FCFS to ful�ll the demands of the incoming
request. These resources are retrieved from the buffer of cloud
resources, consequently, the execution time of FCFS will
be same as before for all these cases. In SJF, the resources
requirement has been matched with the fog devices that have
suf�cient processing power to process the shortest job �rst.
Since most of the time there would not be any ideal resource
match for incoming requests or due to the waiting of long
jobs hence, SJF takes approximately the same execution time
for all cases to execute tasks. In the worst-case scenario, the
execution time for MPSO, and NBIHA approach is increases
because the delay in matching of demand and resource has
a direct effect on processing time. In the MPSO, whenever

FIGURE 11. Comparison of execution time of algorithms in best, average
and worst scenario.

FIGURE 12. Cost analysis of algorithms.

the best two matches from each group of resources exactly
match with the upcoming demand of tasks it presents as the
best case. In the normal-case, the resource match is changing
and so MPSO more ef�ciently than FCFS and SJF. Further,
our approach has a shorter execution time in comparison to
other approaches in both normal and best cases. If all the
resources are matched with demands the hybrid approach is
more ef�cient than when MPSO is considered independently.

Finally, we have evaluated NBIHA and other benchmark
algorithms with respect to the cost of processing in fog
environment. As can be seen in Fig 12, the cost of our
proposed approach is lower than the other algorithms. In case
of NBIHA, the load is balanced by scheduling tasks and this
results in reducing the computational overhead and queuing
time and therefore the cost is reduced. Conversely, in case of
FCFS most of the tasks are sent to the cloud which increases
cost of processing since the cost of processing in cloud is
more than that of in fog computing environment.

E. PROCESSING COST ANALYSIS
It is a similar story in the case of SJF, because it increases
time due to mismatch of the resource. In the case of MPSO,
it increases the cost due to the exact match of the resources
to the demand of the tasks and this in turn increases time and
cost of processing due to waiting time. In NBIHA, the task
scheduling and management of resources reduces waiting
time and cost of processing as seen in Fig 12.

VOLUME 7, 2019 115771

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

F. DISCUSSION
We have analyzed our proposed approach using following
parameters: resource utilization (%), average response time
(ms), energy consumption (j) and execution time (ms). We
have compared the proposed algorithm with benchmark algo-
rithms for scheduling, SJF and FCFS. We have also compared
our proposed approach with the particle swarm optimization
(PSO) meta-heuristic approach in the case of resource man-
agement and allocation to fog nodes. The results from the
simulations show that our proposed approach has better nt
results in the case of resource utilization, average response
time and energy consumption when compared to other bench-
mark state-of-the-art algorithms. In the case of execution
time, if it does not gets a match from the resource pool it
increases execution time.

VII. CONCLUSION
Fog computing is a paradigm that aims to bring the bene�ts
of cloud computing to the very edge of the network, where
latency overheads should be much lower. This paper aims to
provide effective resource utilization in cloud-fof IoT systems
by proposing a novel hybrid resource management approach,
named NBIHA. The proposed scheme balances the load
among fog nodes and manages available fog resources. Given
this, the contributions of the paper are two-fold - task schedul-
ing and resource allocation. MPSO is used to schedule the
tasks, resulting in ef�cient balancing of the load among fog
nodes. A hybrid of bio-inspired algorithms is used to achieve
ef�cient resource allocation. The simulation results show
that the proposed approach optimizes the resource utiliza-
tion and reduces the average response time when compared
with state-of-the-art benchmark and conventional scheduling
algorithms. In the future, we intend to utilize reinforcement
learning techniques for managing resources in the fog-IoT
environment.

REFERENCES
[1] R. Mahmud, R. Kotagiri, and R. Buyya, ‘‘Fog computing: A taxonomy, sur-

vey and future directions,’’ in Internet of Everything. Singapore: Springer,
2018, pp. 103�130.

[2] S. Sarkar and S. Misra, ‘‘Theoretical modelling of fog computing: A green
computing paradigm to support IoT applications,’’ IET Netw., vol. 5, no. 2,
pp. 23�29, 2016.

[3] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet
of Things realize its potential,’’ Computer, vol. 49, no. 8, pp. 112�116,
Aug. 2016.

[4] C. Pulia�to, E. Mingozzi, F. Longo, A. Pulia�to, and O. Rana, ‘‘Fog
computing for the Internet of Things: A survey,’’ ACM Trans. Internet
Technol., vol. 19, no. 2, p. 18, 2019.

[5] H. A. Khattak, H. Arshad, S. ul Islam, G. Ahmed, S. Jabbar, A. M. Sharif,
and S. Khalid, ‘‘Utilization and load balancing in fog servers for health
applications,’’ EURASIP J. Wireless Commun. Netw., vol. 2019, no. 1,
p. 91, 2019.

[6] M. Mukherjee, L. Shu, and D. Wang, ‘‘Survey of fog computing:
Fundamental, network applications, and research challenges,’’
IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 1826�1857,
3rd Quart., 2018.

[7] D. Willis, A. Dasgupta, and S. Banerjee, ‘‘ParaDrop: A multi-tenant plat-
form to dynamically install third party services on wireless gateways,’’
in Proc. 9th ACM Workshop Mobility Evolving Internet Archit., 2014,
pp. 43�48.

[8] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications
and issues,’’ in Proc. Workshop Mobile Big Data, 2015, pp. 37�42.

[9] F. Bhatti, M. A. Shah, C. Maple, and S. Ul Islam, ‘‘A novel Internet of
Things-enabled accident detection and reporting system for smart city
environments,’’ Sensors, vol. 19, no. 9, p. 2071, 2019.

[10] A. Toor, S. ul Islam, G. Ahmed, S. Jabbar, S. Khalid, and A. M. Sharif,
‘‘Energy ef�cient edge-of-things,’’ EURASIP J. Wireless Commun. Netw.,
vol. 2019, no. 1, p. 82, 2019.

[11] S. Sarkar, S. Chatterjee, and S. Misra, ‘‘Assessment of the suitability of
fog computing in the context of Internet of Things,’’ IEEE Trans. Cloud
Comput., vol. 6, no. 1, pp. 46�59, Jan./Mar. 2018.

[12] S. Wang, T. Lei, L. Zhang, C.-H. Hsu, and F. Yang, ‘‘Of�oading mobile
data traf�c for QoS-aware service provision in vehicular cyber-physical
systems,’’ Future Gener. Comput. Syst., vol. 61, pp. 118�127, Aug. 2016.

[13] S. Bitam, S. Zeadally, and A. Mellouk, ‘‘Fog computing job scheduling
optimization based on bees swarm,’’ Enterprise Inf. Syst., vol. 12, no. 4,
pp. 373�397, 2018.

[14] Y. Kong, M. Zhang, and D. Ye, ‘‘A belief propagation-based method for
task allocation in open and dynamic cloud environments,’’ Knowl.-Based
Syst., vol. 115, pp. 123�132, Jan. 2017.

[15] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran,
‘‘Migcep: Operator migration for mobility driven distributed complex
event processing,’’ in Proc. 7th ACM Int. Conf. Distrib. Event-Based Syst.,
2013, pp. 183�194.

[16] P. Hu, S. Dhelim, H. Ning, and T. Qiu, ‘‘Survey on fog computing:
Architecture, key technologies, applications and open issues,’’ J. Netw.
Comput. Appl., vol. 98, pp. 27�42, Nov. 2017.

[17] H. T. T. Binh, D. B. Son, P. A. Duc, and B. M. Nguyen, ‘‘An evolutionary
algorithm for solving task scheduling problem in cloud-fog computing
environment,’’ in Proc. 9th Int. Symp. Inf. Commun. Technol., 2018,
pp. 397�404.

[18] S. Domanal, R. M. Guddeti, and R. Buyya, ‘‘A hybrid bio-inspired algo-
rithm for scheduling and resource management in cloud environment,’’
IEEE Trans. Services Comput., to be published.

[19] L. Gu, ‘‘Cost ef�cient resource management in fog computing supported
medical cyber-physical system,’’ IEEE Trans. Emerg. Topics Comput.,
vol. 5, no. 1, pp. 108�119, Dec. 2017.

[20] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, ‘‘Optimal work-
load allocation in fog-cloud computing toward balanced delay and power
consumption,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 1171�1181,
Dec. 2016.

[21] J. Oueis, E. C. Strinati, and S. Barbarossa, ‘‘The fog balancing: Load
distribution for small cell cloud computing,’’ in Proc. IEEE 81st Veh.
Technol. Conf. (VTC Spring), May 2015, pp. 1�6.

[22] S. Agarwal, S. Yadav, and A. K. Yadav, ‘‘An ef�cient architecture and
algorithm for resource provisioning in fog computing,’’ Int. J. Inf. Eng.
Electron. Bus., vol. 8, no. 1, p. 48, 2016.

[23] S. Ningning, G. Chao, A. Xingshuo, and Z. Qiang, ‘‘Fog computing
dynamic load balancing mechanism based on graph repartitioning,’’ China
Commun., vol. 13, no. 3, pp. 156�164, Mar. 2016.

[24] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
‘‘Mobility-aware application scheduling in fog computing,’’ IEEE Cloud
Comput., vol. 4, no. 2, pp. 26�35, Mar./Apr. 2017.

[25] M.-Q. Tran, D. T. Nguyen, V. A. Le, D. H. Nguyen, and T. V. Pham,
‘‘Task placement on fog computing made ef�cient for iot application
provision,’’ Wireless Commun. Mobile Comput., vol. 2019, Jan. 2019,
Art. no. 6215454.

[26] S. B. Akintoye and A. Bagula, ‘‘Improving quality-of-service in cloud/fog
computing through ef�cient resource allocation,’’ Sensors, vol. 19, no. 6,
p. 1267, 2019.

[27] M. Verma, N. Bhardwaj, and A. K. Yadav, ‘‘Real time ef�cient scheduling
algorithm for load balancing in fog computing environment,’’ Int. J. Inf.
Technol. Comput. Sci, vol. 8, no. 4, pp. 1�10, 2016.

[28] Q. Li, J. Zhao, Y. Gong, and Q. Zhang, ‘‘Energy-ef�cient computation
of�oading and resource allocation in fog computing for Internet of every-
thing,’’ China Commun., vol. 16, no. 3, pp. 32�41, Mar. 2019.

[29] M. Kalra and S. Singh, ‘‘A review of metaheuristic scheduling techniques
in cloud computing,’’ Egyptian Informat. J., vol. 16, no. 3, pp. 275�295,
2015.

[30] K.-C. Lin, Y.-H. Huang, J. C. Hung, and Y.-T. Lin, ‘‘Modi�ed cat swarm
optimization algorithm for feature selection of support vector machines,’’
in Frontier and Innovation in Future Computing and Communications.
Dordrecht, The Netherlands: Springer, 2014, pp. 329�336.

115772 VOLUME 7, 2019

H. Rafique et al.: NBIHA for Efficient Resource Management in Fog Computing

[31] A. R. Arunarani, D. Manjula, and V. Sugumaran, ‘‘Task scheduling tech-
niques in cloud computing: A literature survey,’’ Future Gener. Comput.
Syst., vol. 91, pp. 407�415, Feb. 2019.

[32] L. Zhang, Q. Fu, J. Chen, H. Bai, and X. Zhou, ‘‘A modi�ed particle swarm
optimization algorithm�CPSODE,’’ in Proc. 29th Chin. Control Decis.
Conf. (CCDC), 2017, pp. 6659�6663.

[33] Y. Shi and R. Eberhart, ‘‘A modi�ed particle swarm optimizer,’’ in Proc.
IEEE Int. Conf. Evol. Comput., IEEE World Congr. Comput. Intell.,
May 1998, pp. 69�73.

[34] B. Santosa and M. K. Ningrum, ‘‘Cat swarm optimization for clustering,’’
in Proc. Int. Conf. Soft Comput. Pattern Recognit., Dec. 2009, pp. 54�59.

[35] S.-C. Chu, P.-W. Tsai, and J.-S. Pan, ‘‘Cat swarm optimization,’’ in Proc.
Paci�c Rim Int. Conf. Artif. Intell. Malacca, Malaysia: Springer, 2006,
pp. 854�858.

[36] S. Svorobej, P. T. Endo, M. Bendechache, C. Filelis-Papadopoulos,
K. M. Giannoutakis, G. A. Gravvanis, D. Tzovaras, J. Byrne, and T. Lynn,
‘‘Simulating fog and edge computing scenarios: An overview and research
challenges,’’ Future Internet, vol. 11, no. 3, p. 55, 2019.

[37] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, ‘‘iFogSim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments,’’ Softw., Pract.
Exper., vol. 47, no. 9, pp. 1275�1296, 2017.

[38] R. Mahmud and R. Buyya, ‘‘Modelling and simulation of fog and edge
computing environments using iFogSim toolkit,’’ in Fog and Edge Comput-
ing: Principles and Paradigms. Hoboken, NJ, USA: Wiley, 2019, ch. 17,
pp. 1�35.

HINA RAFIQUE received the B.Sc. degree in
software engineering from COMSATS University
Islamabad, Pakistan, in 2017, where she is cur-
rently pursuing the master’s degree in software
engineering with the Department of Computer
Science. She has been with the Virtual Univer-
sity of Pakistan as an Instructor, since 2018. Her
Research interests include the domain of cloud
computing, fog computing, and software process
improvement.

MUNAM ALI SHAH received the B.Sc. and
M.Sc. degrees in computer science from the Uni-
versity of Peshawar, Pakistan, in 2001 and 2003,
respectively, the M.S. degree in security technolo-
gies and applications from the University of Sur-
rey, U.K., in 2010, and the Ph.D. degree from the
University of Bedfordshire, U.K., in 2013. Since
2004, he has been a Lecturer with the Depart-
ment of Computer Science, COMSATS Institute
of Information Technology, Islamabad, Pakistan.

He is the author of over 50 research articles published in international con-
ferences and journals. His research interests include MAC protocol design,
QoS, and security issues in wireless communication systems. He received
the Best Paper Award of the International Conference on Automation and
Computing, in 2012.

SAIF UL ISLAM received the Ph.D. degree in
computer science from the University Toulouse
III Paul Sabatier, France, in 2015. He is currently
an Assistant Professor with the Department of
Computer Science, Dr. A. Q. Khan Institute of
Computer Science and Information Technology,
Rawalpindi, Pakistan. Previously, he has served
as an Assistant Professor with the COMSATS
University, Islamabad, Pakistan, for three years.
He has been a part of the European Union-funded

research projects during his Ph.D. He was a focal person of a research team at
COMSATS, working in O2 project in collaboration with CERN Switzerland.
His research interests include resource and energy management in large-scale
distributed systems (edge/fog, cloud, content distribution networks (CDN)),
and the Internet of Things (IoT).

TAHIR MAQSOOD received the M.Sc. degree
in computer networks from Northumbria Univer-
sity, U.K., in 2007, and the Ph.D. degree in com-
puter science from the COMSATS Institute of
Information Technology, Pakistan, in 2017. He is
currently an Assistant Professor with the COM-
SATS Institute of Information Technology, Abbot-
tabad, Pakistan. His research interests include task
scheduling, application mapping, energy-ef�cient
systems, and network performance evaluation.

SULEMAN KHAN received the Ph.D. degree
(Hons.) from the Faculty of Computer Science and
Information Technology, University of Malaya,
Malaysia, in 2017. He was a Faculty Member with
the School of Information Technology, Monash
University, Malaysia, from 2017 to 2019. He is
currently a Faculty Member with the Department
of Computer and Information Sciences, Northum-
bria University, Newcastle, U.K. He has published
over 45 high-impact research articles in reputed

international journals, including the IEEE COMMUNICATIONS SURVEYS AND

TUTORIALS, the ACM Computing Surveys, and the IEEE TRANSACTIONS ON

INTELLIGENT TRANSPORTATION SYSTEMS. He has published in the 2018 Local
Computer Networks Conference. His research areas include, but are not
limited to, network forensics, software-de�ned networks, the Internet of
Things (IoT), cloud computing, and vehicular communications.

CARSTEN MAPLE is currently the Director of
research in cyber security and a Professor of cyber
systems engineering with the Cyber Security Cen-
tre, University of Warwick, where he leads the
GCHQ-EPSRC Academic Centre of Excellence in
Cyber Security Research. He is the Privacy and
Trust Stream Lead and has led the project constel-
lation in transport and mobility with PETRAS, the
U.K. research hub for cyber security of the Internet
of Things. He is also a Principal or Co-Investigator

for a number of projects in cyber security. He is currently, or has recently
been, funded by a range of sponsors, including EPSRC, EU, DSTL, the South
Korean Research Agency, and Innovate UK, and private companies. He has
published over 200 peer-reviewed papers and has provided evidence and
advice to governments and organizations across the world, including being a
high-level scienti�c advisor for cyber security to the European Commission.
He is a member of various boards and expert groups. He is also a Fellow of
the Alan Turing Institute. He is the Immediate Past Chair of the Council of
Professors and Heads of Computing, U.K.

VOLUME 7, 2019 115773

