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 Abstract— With the increasing use of induction thermography (IT) for 

non-destructive testing (NDT) in the mechanical and rail industry, it 

becomes necessary for the manufactures to rapidly and accurately 

monitor the health of specimens. The most general problem for IT 

detection is due to strong noise interference. In order to counter it, 

general post-processing is carried out. However, due to the more 

complex nature of noise and irregular shape specimens, this task 

becomes difficult and challenging. In this paper, a low-rank tensor with 

a sparse mixture of Gaussian (MoG) (LRTSMoG) decomposition 

algorithm for natural crack detection is proposed. The proposed 

algorithm models jointly the low rank tensor and sparse pattern by using 

a tensor decomposition framework. In particular, the weak natural crack 

information can be extracted from strong noise. Low-rank tensor based 

iterative sparse MoG noise modeling is carried out to enhance the weak 

natural crack information as well as reducing the computational cost. In 

order to show the robustness and efficacy of the model, experiments are 

conducted for natural crack detection on a variety of specimens. A 

comparative analysis is presented with general tensor decomposition 

algorithms. The algorithms are evaluated quantitatively based on signal-

to-noise-ratio (SNR) along with the visual comparative analysis.    

Index Terms— Inductive thermography, tensor decomposition, 

joint low-rank sparse tensor decomposition, weak signal detection. 

I. INTRODUCTION 

EFECT detection encountered in manufacturing industry using 

the imaging diagnostic is in high demand. The authors in [1], 

worked on the radiography images for the metallic specimen with 

weld type defect detection. In [2], solar wafer images to detect defects 

on the multi-crystalline structure using the wavelet analysis was 

proposed. Imaging diagnostic using Haar wavelets was proposed for 

hot-rolled steel defects analysis and quantification [3]. These recent 

work show that the imaging diagnostic plays an important role in the 

science and manufacturing industry to detect occurring defects [4]. In 

the non-destructive testing (NDT) and structural health monitoring 

(SHM) application, thermography [5] is a commonly used technique 

 

 

and method, owing to its unique characteristics of fast, wide and non-

contact inspection. 

The inductive thermography (IT) based imaging diagnostic has 

been widely used in the NDT and SHM applications for metal defect 

detection and quantification [6], [7]. Bai et al. [8], [9] applied IT for 

metallic specimen type of defect detection. The metal defects were 

detected by separating the anomalous thermal patterns. Chang et al. 

[10] utilized the inductive thermography for metal specimen image 

damage detection and separation. For crack detection on metallic 

specimen, Genest et al. [11] used the inductive thermography. Jackal 

and Netzelmann [12] utilized the IT to study the external influence of 

the magnetic field for the thermal contrast of crack type defects. For 

the defect detection and analysis in the thermal imaging diagnostic 

system, the IT utilizes the heating principle by the eddy current on the 

defect region. The change in temperature on the defect profile 

produces temperature contrast between the defect and non-defect area. 

This is the general idea behind the use of thermal imaging diagnostic 

system. More application of IT can be found in [13]–[16] which 

include, small defects on irregular shapes, micro cracks due to fatigue, 

corrosion detection of blisters in the coating environment. 

In order to scan and process large- and long-size specimen, motion 

and scanning based thermographic methods are considered effective. 

However, in case of eddy current pulse thermographic approach, the 

method may suffer from the skin effect and uneven heating [17],[18]. 

The problem of defect detection becomes more difficult when the 

defects are with irregular shape and in sub-surface. The initial 

investigations into the dynamic motion based scanning thermographic 

approach were presented in [19]. The authors applied the induction coil 

based line heating scanning principle to detect the sub-surface defects. 

The simulation study incorporating the motion were carried out for the 

parameter selection. In addition, the experimental studies were 

presented as a validation. In [20], the authors proposed a robotic arm 

based scanning approach for large composite specimen using low 

power excitation thermography. The simulation as well as 

experimental studies were presented to justify and validate the 

approach. Further, the existing post-processing algorithms were tested 

and analyzed. In [18], the authors proposed a dynamic motion based 

approach with scanning eddy current pulse thermography. The 

proposed approach gives the benefit of enhanced detection area along 

with enhanced defect detection efficiency. In [21], the authors 

proposed a joint scanning laser thermography approach to detect flat 

bottom holes in carbon fiber reinforced polymer. A scanning scheme 

along with the reconstruction approach is proposed to increase the 

defect detection efficiency of the existing state-of-the-art 

thermographic post-processing algorithms. The dynamic motion based 

approaches induce new insights of enhanced area and fast inspection 

into the induction heating based thermography. However, the 

advanced and problem oriented post-image processing is ever more 
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necessary to cope with their shortcomings and enhance their detection 

capability. 

The thermographic images in the raw form contain a lot of noise 

and the defect information is not clear. To tackle this problem feature 

extraction, sparse representation and other post image processing 

techniques are used to reduce the noise the extract the defects 

information [22]–[25]. Generally, the sparse representation and 

decomposition based algorithms are utilized to detect the defects using 

IT. Gao et al. [26] utilized the concept of variational Bayes 

decomposition and non-negative matrix decomposition to extract the 

features and defect information. Li et al. [27] proposed a defect 

detection process utilizing the closed loop pre and post-processing 

approach using IT. Gao et al. [28] proposed a variational Bayes 

approach with sub-group adaptive fine-tuning of sparse component for 

defect detection using IT. Xiao et al. [29] proposed a spatial-time-

fusion algorithm for defect detection using IT. The proposed algorithm 

utilizes the independent component analysis to extract features and 

then from those features the automatic embedding using a genetic 

algorithm is done for defect profile extraction. Wang et al. [30] 

proposed a thermal pattern based contrast enhancing algorithm for 

defect detection using IT. The proposed algorithm utilizes the optical 

flow based approach to extract the features and further principal 

component analysis is carried out to improve the contrast of the 

thermal sequences. 

In general, the sparse representation based matrix decomposition 

algorithms converts the whole thermographic sequences into the single 

matrix for decomposition and thus can only represent the single 

variability factor of the data. As the structure of the thermographic data 

is multi-factor, matrix decompositions cannot fully extract the 

information in such data [31]. In [32], CANDECOMP/PARAFAC-

alternating least square (CP_ALS) algorithm is proposed. This is a 

baseline algorithm used in the tensor decomposition approach. Andrew 

et al. [33] proposed an algorithm for multi-spectral imaging in video 

surveillance applications called online stochastic framework for tensor 

decomposition (OSTD). In [34], authors proposed a novel tensor based 

algorithm for background modeling by utilizing the core matrix in the 

tensor singular value decomposition (t-SVD) called improved robust 

tensor principal component analysis (IRTPCA). 

The tensor based algorithms generally suffer from high 

computational cost due to the multiple-array and multi-factor data.  

These algorithms generally consider noise with Gaussian distribution. 

However, for the case of thermal IT data, this consideration is not fully 

justified. In [35], [36], it was validated that noise follows a more 

complex distribution in thermal data. To efficiently tackle the problem 

of speed limitation and noise, we propose a low-rank tensor with sparse 

mixture of Gaussian (MoG) decomposition (LRTSMoG) algorithm for 

metal type defect detection by IT system. A tensor tri-decomposition 

based model is proposed. The model is solved iteratively for the low-

rank and sparse components. For the low-rank component, a more fast 

and robust improved tensor nuclear norm based tensor singular value 

thresholding (t-SVT) [37] algorithm is proposed and for the sparse 

modeling, robust MoG [38] algorithm is proposed. The proposed 

LRTSMoG model inherits the properties of multi-factor tensor 

decomposition along with sparse MoG noise modeling. By modeling 

the low rank and sparse data iteratively in a tensor decomposition 

framework, we can process large thermal sequences data with less 

computation and model the noise more efficiently which helps to 

recover the defect information more accurately and with better 

resolution. The proposed model is tested for cracks on metallic 

specimen with irregular shape defects. A variety of metallic specimen 

are selected such as pipeline and axle with irregular shape having 

artificial as well as natural defect profiles to validate its robustness and 

efficiency. Along with the visual results, the event-based signal-to-

noise ratio (SNR) [39] and precision and recall based F-score [30] is 

also used for the quantitative analysis. To show the efficacy of the 

proposed model a comparison is also presented with recent and state-

of-the-art tensor decomposition algorithms.          

The rest of this paper has been organized as follows: The proposed 

algorithm is described in Section 2. The experimental setup and 

information about the specimen are given in Section 3. Results and 

discussions are elaborated in Section 4. Finally, conclusions are drawn 

in Section 5. 

II. THE PROPOSED METHODOLOGY 

A. Proposed Algorithm 

 Let 𝑋 ∈ ℝ𝑛1×𝑛2×𝑘 be the data tensor containing the thermographic 

image sequence. Here (𝑛1, 𝑛2)  denote the spatial resolution of the 

tensor and 𝑘 represent the 𝑘𝑡ℎ three-way tensor. It can be decomposed 

into the low rank component 𝐿 ∈ ℝ𝑛1×𝑛2×𝑘 , sparse component 𝑆 ∈

ℝ𝑛1×𝑛2×𝑘 and noise component 𝑁𝑜 ∈ ℝ𝑛1×𝑛2×𝑘 as follows: 

𝑋 = 𝐿 + 𝑆 + 𝑁𝑜                                       (1) 

The general low-rank sparse tri-decomposition optimization problem 

[40] can be formulated as: 

min
𝐿,𝑆

{𝑠‖𝐿𝑘‖
∗

+ 𝛬‖𝑆𝑘‖
2

+ ‖𝑋𝑘 − 𝐿𝑘 − 𝑆𝑘‖
𝐹

2
}                  (2) 

where 𝛬 is the regularizing parameters for 𝑆, ‖. ‖2  represents the 𝑙2 

norm, ‖. ‖∗  represents the tensor nuclear norm for low rank term 𝐿, 𝑠 

is the regularizing parameter for 𝐿 , ‖. ‖𝐹  represents the Frobenious 

norm and 𝑘 represents the 𝑘𝑡ℎ three-way tensor. The problem in (2) is 

a two-fold problem. It is jointly solved for the low rank and sparse 

terms. First, we decompose the problem of (2) into two sub-problems 

for a better understanding. 

(𝐿)𝑘 = 𝑎𝑟𝑔 min
𝐿

{‖𝐿𝑘 − (𝑋𝑘 − 𝑆𝑘−1)‖
𝐹

2
+ 𝑠‖𝐿𝑘‖

∗
}             (3) 

(𝑆)𝑘 = arg 𝑚𝑖𝑛𝑆 {‖(𝑋𝑘 − 𝐿𝑘) − 𝑆𝑘‖
𝐹

2
+ 𝛬‖𝑆𝑘‖

2

2
}                    (4) 

Eqn. (3) is a classic convex optimization problem and it can be solved 

by using the tensor singular value thresholding algorithm[37]. For (4), 

we solve it by using the MoG matrix factorization [38]. 

 1) Tensor Nuclear Norm (TNN) based singular value thresholding 

(SVT): For the problem of (3), we propose an improved tensor nuclear 

norm based algorithm.     

   a) Tensor singular value thresholding: Based on TNN a 

singular value thresholding can be performed to solve for (3). Let 𝑋𝑘 −

𝑆𝑘−1 = 𝑌𝑘, the problem is (3) can be reformulated as: 

Table. I Tensor nuclear norm based tensor singular value thresholding 

algorithm (t-SVT) 

1. Input Data 𝒀 ∈ ℝ𝒏𝟏×𝒏𝟐×𝒌,s>0 

2. Compute fast fourier transform (fft) of 𝒀:  
3. Compute �̅� = 𝐟𝐟𝐭(𝐘, [ ], 𝟑), 
4. Perform matrix SVT on each frontal slice of �̅� : 

𝐟𝐨𝐫 𝒊 = 𝟏, ⋯ , [
𝒌 + 𝟏

𝟐
]  𝐝𝐨 

[𝑼, 𝑺, 𝑽] = 𝑺𝑽𝑫(�̅�𝒊); 
𝑾𝒊 = 𝑼 ∙ (𝑺 − 𝒔)+ ∙ 𝑽𝑻; 
𝐞𝐧𝐝 𝐟𝐨𝐫 

𝐟𝐨𝐫 𝒊 = [
𝒌 + 𝟏

𝟐
] + 𝟏, ⋯ , 𝒌 𝐝𝐨 

𝑾𝒊 = 𝐜𝐨𝐧𝐣(𝑾(𝒌−𝒊+𝟐)); 

𝐞𝐧𝐝 𝐟𝐨𝐫 

5. Compute output; 𝐋 = 𝐢𝐟𝐟𝐭(𝐖, [ ], 𝟑).                               

 



  

(𝐿)𝑘 = 𝑎𝑟𝑔 min
𝐿

{‖𝐿𝑘 − 𝑌𝑘‖
𝐹

2
+ 𝑠‖𝐿𝑘‖

∗
}                  (5) 

According to [37], the problem in (5) has a closed form solution which 

is based on the definition of TNN. Let 𝑌 = 𝒰 ∗ 𝒮 ∗ 𝒱𝑇 represent the 

tensor SVD of 𝑌. 𝒰 represent the left singular tensor, 𝒮 represents the 

diagonal singular value tensor, 𝒱𝑇 shows the right singular tensor, and 

∗ represents the tensor product. For each 𝑠>0, the tensor singular value 

thresholding operator can be given as: 

𝐷𝑠(𝑌) = 𝒰 ∗ 𝒮𝑠 ∗ 𝒱𝑇,                                  (6) 

where 

𝒮𝑠 = ifft((�̅� − 𝑠)+,[ ], 3)                              (7) 

where ′ifft′  is the inverse fast fourier transform, �̅�  represents those 

singular values from 𝒮  greater than 𝑠 , 𝑠  represents the soft-

thresholding operator. From (7) it can be observed that the entries of �̅� 

are real. Above (�̅� − 𝑠)+  shows that only positive values are 

considered for evaluation. It should be noted here that this operator 

performs the soft-thresholding to singular values of �̅� (not 𝒮) of the 

frontal slice of �̅�, which is effectively shrinking to zero. The tensor 

SVT can be called the proximity operator of TNN and further proofs 

and definition can be found in [37]. The steps of the TNN based tensor 

t-SVT algorithm are given in Table I. 

 1) Sparse Decomposition with MoG Distribution: For the other part 

of the problem in (4), we solve it by the sparse decomposition 

algorithm of [38]. Let 𝑋𝑘 − 𝐿𝑘 = 𝐷𝑘  and 𝑆𝑘 = 𝑃𝑄𝑇 . Here 𝑃 𝑎𝑛𝑑 𝑄 

are the basis and coefficient matrices for 𝑆. The problem in (4) can be 

reformulated as: 

(𝑃𝑄𝑇)𝑘 = arg 𝑚𝑖𝑛𝑃,𝑄 {‖𝐷𝑘 − 𝑃𝑄𝑇‖
𝐹

2
+ 𝛬𝑝‖𝑃‖2

2 + 𝛬𝑞‖𝑄‖2
2}     (8) 

In the maximum likelihood estimation (MLE) formulation, the 

problem in (8) can be expressed as: 

𝑑𝑖𝑗 = (𝑝𝑖)𝑇 𝑞𝑗 + 𝑒𝑖𝑗                                     (9) 

where 𝑝𝑖 , 𝑞𝑗 ∈ 𝑅𝑟  represent the 𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ  row vectors of 𝑃 𝑎𝑛𝑑 𝑄 

respectively and 𝑒𝑖𝑗  is the noise component residing in 𝑑𝑖𝑗 .  In the 

literature, it is generally assumed the noise has a Gaussian/Laplacian 

distribution, but in real scenarios, this assumption is not always true 

[41], [42]. Idea of tensor MoG based low rank sparse decomposition is 

to provide a MoG noise distribution for each slice 𝑘 in the thermal 

tensor data. Here, the tensor we have has a three-way structure. For 

each slice of tensor data 𝑑𝑘 , the MoG parameters include 𝛱𝑘 =

{𝜋𝑗
𝑘}𝑗=1

𝐽 , 𝛴𝑘 = {𝛿𝑗
𝑘2

}𝑗=1
𝐽  𝑎𝑛𝑑 {𝑁𝑗

𝑘}𝑗=1
𝐽

. So from the MAP theory, the 

probabilistic model for the Tensor MoG can be given as: 

𝑑𝑖
𝑘~ ∏ 𝒩(𝑑𝑖

𝑘|(𝑝𝑖)𝑇𝑞, 𝛿𝑗
2 )𝑧𝑖𝑗

𝑘𝐽
𝑗=1 , 𝑧𝑖

𝑘~𝑀(𝑧𝑖
𝑘|𝛱)             (10) 

where 𝑑𝑖
𝑘  is the 𝑖𝑡ℎ  pixel of the 𝑑𝑘  and 𝑀  denoted the multinomial 

distribution. These natural conjugate priors have Inverse-Gamma and 

Dirichlet distribution as: 

𝛿𝑗
2~Inv − Gamma (𝛿𝑗

2|
𝑁𝑗

𝑘−1

2
− 1,

𝑁𝑗
𝑘−1𝛿𝑗

𝑘−12

2
),                 (11) 

𝛱~Dir(𝛱|𝑎), 𝑎 = (𝑁𝑘−1𝜋1
𝑘−1 + 1, ⋯ , 𝑁𝑘−1𝜋𝑘

𝑘−1)          (12) 

where 𝑁𝑘−1 = ∑ 𝑁𝑗
𝑘−1𝐽

𝑗=1 , 𝜋𝑗
𝑘−1 = 𝑁𝑗

𝑘−1/𝑁𝑘−1 . It can be observed 

that the maximum of the above conjugate priors are 𝛴𝑘−1 𝑎𝑛𝑑 𝛱𝑘−1. 

This enforces the fact that the priors encode the previous learned noise 

knowledge. The subspace  𝑃 ,  can be modeled to have a Gaussian 

distribution which can be given as: 

𝑃𝑖~ 𝒩 (𝑃𝑖|𝑃𝑖
𝑘−1,

1

𝜌
𝐴𝑖

𝑘−1)                         (13) 

where 
1

𝜌
𝐴𝑖

𝑘−1  is the positive semi-definite matrix. Here, the hyper 

parameters are denoted by 𝛩𝑘−1 and the marginalized latent variable 

is denoted by  𝑧𝑘 then the posterior distribution of (𝛱, 𝛴, 𝑞, 𝑃) can be 

given as: 

𝑝(𝛱, 𝛴, 𝑞, 𝑃|𝑑𝑘 , 𝛩𝑘−1) ∝

                𝑝(𝑑𝑘|𝛱, 𝛴, 𝑞, 𝑃)𝑝(𝛴|𝛩𝑘−1)𝑝(𝛱|𝛩𝑘−1)𝑝(𝑃|𝛩𝑘−1)𝑝(𝑞)   (14) 

Further, the minimization problem for(𝛱𝑘 , 𝛴𝑘 , 𝑞𝑘, 𝑃𝑘) can be given as 

follows: 

   𝐿𝑘(𝛱, 𝛴, 𝑞, 𝑃) =  − 𝑙𝑛 𝑝(𝑑𝑘|𝛱, 𝛴, 𝑞, 𝑃) + ℜ𝐹
𝑘(𝛱, 𝛴) + ℜ𝐵

𝑘 (𝑃)    (15) 
 

where 

𝑙𝑛 𝑝(𝑑𝑘|𝛱, 𝛴, 𝑞, 𝑃) =  ∑ 𝑙𝑛(∑ 𝜋𝑘𝒩(𝑑𝑖
𝑘|(𝑝𝑖)𝑇𝑞, 𝛿𝑗

2)𝐽
𝑗=1 )𝑖               (16) 

ℜ𝐹
𝑘(𝛱, 𝛴) = ∑ 𝒩𝑗

𝑘−1 (
1

2

𝛿𝑘

𝛿𝑗
2 + 𝑙𝑛 𝛿𝑗) −𝐽

𝑗=1 𝒩𝑘−1 ∑ 𝜋𝑗
𝑘−1 𝑙𝑛 𝜋𝑗

𝐽
𝑗=1   (17) 

ℜ𝐵
𝑘 (𝑃) = 𝜌 ∑ (𝑝𝑖 − 𝑝𝑖

𝑘−1)(𝐴𝑖
𝑘−1)

−1𝑙
𝑖=1 (𝑝𝑖 − 𝑝𝑖

𝑘−1)                      (18) 

 

In above, the first term represents the likelihood term to enforce the 

learned parameters to adapt to the current slice of the tensor data 𝑑𝑘.  

The second term is the regularization parameter for the noise term. It 

helps the current slice with the knowledge from the previous slice to 

help rectify the noise more efficiently. In the same manner, the last 

term uses the knowledge from the previous data 𝑃𝑘−1 to help correctly 

learn the subspace 𝑃 . It actually corresponds to the aahalanobis 

distance between the 𝑃𝑘  and 𝑃𝑘−1 . The parameters 𝑁𝑘−1  and  𝜌 

controls the strength of the priors. The Ea algorithm is used to solve 

the problem of (14). For each slice of 𝑑𝑘 tensor the E-step and a-step 

are applied in an alternating manner: 

 

Fig. 1. IT schematic diagram 

 

 

Fig. 2. The proposed IT system 

 



  

E-Step: This step calculates the expectation value of the latent variable 

𝑧𝑖𝑗
𝑘  which is also termed as responsibility parameter 𝛾𝑖𝑗

𝑘 . The equation 

for E-step can be formulated as: 

 

𝐸(𝑧𝑖𝑗
𝑘 ) = 𝛾𝑖𝑗

𝑘 =
𝜋𝑗𝒩(𝑑𝑖

𝑘
|(𝑝𝑖)𝑇𝑞𝑗 , 𝛿𝑗

2
)

∑ 𝜋𝑗𝒩(𝑑𝑖
𝑘

|(𝑝𝑖)𝑇𝑞𝑗 , 𝛿𝑗
2

)
𝐽
𝑗=1

                    (19) 

 

M-Step: In this step the MoG parameters 𝛱, 𝛴  are updated. The 

parameters are updated by solving the following problem: 

 

𝐿′𝑘(𝛱, 𝛴) = −𝐸𝑧𝑘 𝑙𝑛 𝑝(𝑑𝑘 , 𝑧𝑘|𝛱, 𝛴, 𝑞, 𝑃) + ℜ𝐹
𝑘(𝛱, 𝛴)           (20)                       

The closed form solution is: 

𝜋𝑗 = 𝜋𝑗
𝑘−1 −

𝒩`

𝒩
(𝜋𝑗

𝑘−1 − 𝜋 �̀�);𝛿𝑗
2 = 𝛿𝑗

𝑘−12
−

𝒩`

𝒩
(𝛿𝑗

𝑘−12
− 𝛿 �̀�

2) (21)                       

𝒩` = 𝑙; 𝒩`𝑘 = ∑ 𝛾𝑖𝑗
𝑘𝑙

𝑖 ; 𝜋 �̀� =
𝒩`𝑗

𝒩`
; 

𝛿 �̀�
2 =

1

𝒩 �̀�
∑ 𝛾𝑖𝑗

𝑘 (𝑑𝑖
𝑘 − (𝑝𝑖)𝑇𝑞)

2𝑙

𝑖
 𝒩 = 𝒩𝑘−1 + 𝒩` 

; 𝒩𝑗 = 𝒩𝑗
𝑘−1 + 𝒩 �̀�                                   (22) 

For the coefficient term 𝑞, the following sub-problem of (14) is solved: 

𝑚𝑖𝑛𝑞‖𝑤𝑘 ∙ (𝑑𝑘 − 𝑃𝑞)‖
𝐹

2
                                  (23) 

This problem falls in the category of the weighted least square problem 

whose closed form solution is: 

𝑞 = (𝑝𝑇𝑑𝑖𝑎𝑔(𝑤𝑘)2𝑝)−1𝑝𝑇𝑑𝑖𝑎𝑔(𝑤𝑘)2𝑑𝑘                   (24) 

For the term 𝑃, we solve the following sub-problem of (14) given as: 

𝐿′𝑘(𝑃) = −𝐸𝑧
𝑝

𝑙𝑛 𝑝(𝑑𝑘, 𝑧𝑡|𝛱, 𝛴, 𝑞, 𝑃) + ℜ𝐵
𝑘 (𝑃) 

= ‖𝑤𝑘 ∙ (𝑑𝑘 − 𝑃𝑞𝑘)‖
𝐹

2
+ ℜ𝐵

𝑘 (𝑃)                      (25) 

The closed form solution for this problem can be given as: 

 

𝑝𝑖
𝑘 = (𝜌(𝐴𝑖

𝑘−1)
−1

+ (𝑤𝑖
𝑘)

2
𝑞𝑘(𝑞𝑘)𝑇)(𝜌(𝐴𝑖

𝑘−1)
−1

𝑝𝑖
𝑘−1 

+(𝑤𝑖
𝑘)

2
𝑑𝑖

𝑘(𝑞𝑘)𝑇)                                                      (26) 

Finally, the updating rule is set as: 

(𝐴𝑖
𝑘)

−1
= 𝜌(𝐴𝑖

𝑘−1)
−1

+ (𝑤𝑖
𝑘)

2
𝑞(𝑞𝑘)𝑇; 

𝑏𝑖
𝑘 = (𝜌(𝐴𝑖

𝑘−1)
−1

𝑝𝑖
𝑘−1 + (𝑤𝑖

𝑘)
2

𝑑𝑖
𝑘(𝑞𝑘)𝑇)              (27) 

 

We have 𝑝𝑖
𝑘 = 𝐴𝑖

𝑘𝑏𝑖
𝑘. In order to save the computation time and avoid 

the matrix inverse in the above equation, the update rule is given as 

following the matrix inverse equations: 

𝐴𝑖
𝑘 =

1

𝜌
(𝐴𝑖

𝑘−1 −
(𝑊𝑖

𝑘)
2

𝐴𝑖
𝑘−1𝑞𝑘(𝑞𝑘)𝑇𝐴𝑖

𝑘−1

𝜌+(𝑤𝑖
𝑘)

2
(𝑞𝑘)𝑇𝐴𝑖

𝑘−1𝑞𝑘
); 

𝑏𝑖
𝑘 = 𝜌𝑏𝑖

𝑘−1 + (𝑤𝑖
𝑘)2𝑑𝑖

𝑘𝑞𝑘                               (28) 

It is worth noting that for updating the 𝑃𝑘 in each step, only (𝐴𝑖
𝑘−1)𝑖=1

𝑙  

and (𝑏𝑖
𝑘−1)𝑖=1

𝑙   are evaluated. By doing so, only a fixed amount of 

memory can be used. Further, from (28), it can be seen that matrix 

inverse is not used in the updating equations and hence the efficiency 

of the algorithm gets better. The steps of the proposed algorithm are 

given in Table II and the flowchart of consecutive steps is shown in 

Fig. 3. 

III. EXPERIMENTAL SETUP  

A. Experiment set-up and specimen details 

 The schematic diagram of IT is given in Fig. 1. High-Frequency 

pulse current is used as the excitation signal which is generated by an 

induction heating element for a few milliseconds. This continuing 

current travels to the transmitting coil which is placed above the 

conducting material. This coil will induce the eddy currents which in 

turn will generate the resistive heating effect in the conductive material 

under test. Thermal diffusion phenomenon occurs in the conductive 

material allowing the heat to flow from the high-temperature area to 

low temperature area and decays slowly in the material to reach a 

thermal balance. In this process, if defects are present in the conductive 

material they will produce disturbances in the thermal diffusion. 

Consequently, those disturbances in the surface heat distribution 

represented as the transient temperature time spatial response will be 

captured by the infrared camera for further analysis. 

Fig. 1 shows the basic schematic diagram for the ECPT of IT 

detection system using the reflection mode configuration. Similar 

experimental configuration can be found in [25]. In this configuration, 

the IR camera and the excitation are placed face the same direction and 

opposite to the specimen under test. In our experimental study, we have 

used this configuration. More information about different excitation 

Table. II Low-rank tensor with sparse aoG (LRTSaoG) 

Algorithm 

Input: the aoG parameters: {𝛱𝑘−1,  𝛴𝑘−1, 𝛮𝑘−1}, model 

variables : [{𝐴𝑖
𝑘−1}𝑖=1

𝑙 ], [{𝑏𝑖
𝑘−1}𝑖=1

𝑙 ], [𝑃𝑘−1], tensor data, 𝜖 =
1𝑒 − 6. 

Initialization: {𝛱, 𝛴 } = {𝛱𝑘−1,  𝛴𝑘−1} , 𝑞𝑘 . 
1. While not converged do: 

2. Given the data and initializations of sparse component; solve 

for low rank problem 𝐿𝑘 of (3) using the t-SVT algorithm in 

Table. I.  

3. Given the tensor and low-rank data for the sparse component 

problem 𝑆𝑘 of (4) solve by Ea algorithm. 

4. Online E-Step: compute 𝛾𝑖𝑗
𝑘  by (19) 

5. Online a-Step: compute {𝛱, 𝛴,Ν} by (21) and {𝑞𝑘} by (24). 

6. for each {𝑃𝑖
𝑘}, 𝑖 = 1,2, . . . , 𝑙. do, 

7. compute [{𝐴𝑖
𝑘−1}𝑖=1

𝑙 ], [{𝑏𝑖
𝑘−1}𝑖=1

𝑙 ] by (28). 

8. compute {𝑃𝑖
𝑘} by𝑃𝑖

𝑘 = 𝐴𝑖
𝑘𝑏𝑖

𝑘 

9. end for 

10. 𝑆𝑘 = 𝑃𝑘𝑞𝑘𝑇
 

11.  Check for convergence ‖𝐿𝑘 − 𝐿𝑘−1‖
∞

≤ 𝜖  

‖𝑆𝑘 − 𝑆𝑘−1‖
∞

≤ 𝜖 

12. End while 

Output: 𝐿𝑘 , 𝑆𝑘 

 

 

  Fig. 3. The flowchart of the proposed model 



  

configurations can be found in [43]. In our experimental study a 

movable IT excitation source is used for the scanning of the specimen. 

As the pipeline and irregular shape specimens are quite large as well 

as in case of unknown defect location, the whole sample needs to be 

scanned. In our proposed experimental configuration, this is achieved 

by exciting the IT coil and slowly moving the excitation coil along 

with IR camera for scanning the sample. A number of repetitive 

experiments are performed and the best (in terms of SNR) thermal 

video sequences are chosen for further defect detection analysis. In the 

comparison results in Fig. 3, the conventional matrix decomposition 

based algorithm of PCA[44], TSR[45] and FFT[46] are unable to 

identify the defects because of motion based IT data and produce 

replicas of detection results. The motion-based IT data are obtained 

from the specimen numbers (1, 2, 9, 10, 11, 12 and 13). 

The electromagnetic thermal imaging system is shown in Fig. 2. In 

our experiments, the coil is used as excitation and is controlled by the 

excitation source. We use the IR camera (FLIR A655sc) to collect 

thermal video sequences. The frame rate is set to 100FPS for all the 

experiments. The reflection mode configuration is used in which the 

test sample is placed opposite to the IR camera. 

In order to verify the proposed method, fourteen different samples 

with artificial and natural defects are tested. Most of the samples are 

metallic with ferromagnetic properties, while the weld-joint samples 

are non-ferromagnetic. All these cracks on the different specimen are 

irregular shaped. The information of these samples can be found in 

Table. III. The location of cracks is masked with red rectangle region. 

 

Table. III Information about the sample specimen 

Type Sample #1 Sample #2   
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IV. EXPERIMENTS ANALYSIS 

The visual results are presented along with the quantitative results 

based on running times and SNR [39]. To show the efficacy of the 

proposed algorithm the comparative analysis is presented with general 

IT detection algorithms and other tensor decomposition based 

algorithms. The algorithms in the comparison include principal 

component analysis (PCA) [44], thermal signal reconstruction (TSR) 

[45], pulse phase thermography based on fast Fourier transform 

(FFT)[46], OSTD[33], and IRTPCA[34]. The red rectangles are drawn 

manually to highlight the position of the defects for analyzing 

comparative defects detection results. These can be considered as the 

ground truth for validation. All the experiments are carried out in a 

corei7 computer with Windows-10 operating system having 8GB 

RAM. MATLAB2017b software is utilized for all the algorithms 

evaluation. The comparative results for all specimen are summarized 

in Table. IV. 

The visual results are presented in Fig. 4 in a tabular form. Fig. 4 

shows the intensity results from the thermographic data. The 

thermographic data are converted in the intensity data using the 

MATLAB (mat2gray) command.  The specimen 1 is an irregular shape 

pipeline with a natural surface defect. Here, the thermographic data is 

motion based data.  From the results it can be seen that replicas of 

results are generated by the general IT detection based algorithms of 

PCA, TSR and FFT and the defect information is not very clear. The 

results from IRTPCA and the proposed algorithm are quite clear for 

this specimen.  The specimen 3 shows the results of defects on an Axle. 

Here, the defects are surface and natural with irregular shape and 

length. The general IT detection methods of PCA, TSR and FFT show 

reasonably good contrast. However, they encounter more false 

detection results and are unable to detect the defects completely. The 

IRTPCA performs well for the specimen 3 but for other specimen the 

results becomes worse due to the strong noise. The proposed algorithm 

is able to detect the defect more clearly and with better resolution and 

contrast. 

The specimen 7 is the weld type with irregular shape natural defects. 

Here, the general IT detection algorithm perform well in partially 

detecting the defect information. The OSTD algorithm is unable to 

detect defect for specimen 7 and has strong noise and poor resolution. 

The IRTPCA algorithm has good detection results for specimen 7. The 

proposed algorithm given better results with reduction in noise and 

increase in SNR. 

The specimen 10 is an irregular shape specimen with natural 

defects. Here, the IT thermographic data is the motion based data. 

From the results of specimen 10 it can be seen that the PCA, TSR and 

FFT are unable to detect defects and produce false defects along with 

original defects in terms of replicas due to the motion of IR excitation 

source and camera. The OSTD and IRTPCA produce reasonable and 

good results with better SNR. The proposed algorithm gives results 

with good SNR and resolution. 

The specimen 12 is the metallic sample with artificial defects. For 

specimen 12 the motion based IT experiments are performed. From the 

results it can be observed that PCA, TSR and FFT algorithm are unable 

to detect defects clearly. The OSTD and IRTPCA give reasonably 

better results and are able to detect defects. The proposed algorithm 

given better defect detection results in terms of resolution and contrast. 

The complete visual comparison results are given in the supplement 

file for all the specimen and only one result from each specimen type 

is presented here. 

The quantitative comparison based on SNR and computation time 

are given in Table. IV. The last row gives the average SNR for all the 

algorithms along with the average running time in seconds. On 

average, the PCA [44] algorithm has an SNR of 2.0875 with 59.91 

seconds in average running time. For the TSR [45] algorithm, the 

average SNR is 2.6755 with the average running time of 414.27. For 

the FFT [46] algorithm, the SNR average is 3.4018 with the 

computation time average of 110.74. The average SNR for the OSTD 

[33] algorithm is 2.4141 with the average running time of 1271.25 

seconds. The IRTPCA [34] algorithm has a running time of 412.07 

seconds with a reasonable SNR of 3.3077. The proposed algorithm 

gives on average the highest SNR of 7.5195. The proposed algorithm 

takes around on average 90.97 seconds to be the second-fastest 

algorithm to the PCA. By optimizing the low rank and sparse data in a 

tensor model with MoG noise distribution, it can remove the noise and 

improve the resolution. The proposed algorithm shows better defect 

detection ability in the inductive thermography based natural crack 

detection task.  The precision and recall based F-score has been 

evaluated for each algorithm and the results are shown in Table V. The 

details of F-score can be found in [30]. Looking at the results for 

specimen type (Axle and Weld Joint), it can be observed from the 
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Artificial 
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comparison that the proposed algorithm has better defect detection 

accuracy in terms of F-score.  

The proposed algorithm utilizes the improved tensor nuclear norm 

for low-rank analysis along with MoG decomposition for the sparse 

analysis. The tensor-based algorithms generally suffer from high 

computational cost due to the multiple-array and multi-factor data.  

These algorithms generally consider noise with Gaussian distribution. 

The proposed improved tensor nuclear norm based t-SVT considers 

the singular values of the frontal slice only in the computation of SVD 

instead of the whole 3-way data and only half of the singular values 

are considered for SVD based low-rank tensor estimation which saves 

significant computation time with minimal loss of information. Since 

noise in the thermal data is not necessarily consistent with Gaussian 

distribution, the conjunction of using the MoG with the tensor 

decomposition paves the way for better modeling the noise where it is 

assumed to have a more complex distribution and can be estimated by 

using a Mixture of Gaussian (MoG) distribution. Thus, it has the 

capability to extract weak defect information given by low-intensity 

image pixels embedded in non-Gaussian noise. Thus the use of tensor 

framework allows the unique properties of tensors for analyzing 

multivariate data and it is more suitable for long and continuous 

thermal sequences.

Fig. 4. Comparison analysis for different sample Top Row (Left to Right) OSTD[33], IRTPCA[34], LRTSMoG and Bottom Row (Left to 

Right) PCA[44], TSR[45]and FFT [46]algorithms 
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Table. IV. Comparison results average SNR (Top) and average time taken (Bottom) 

Specimen 

Type 

PCA[44] TSR[45] FFT[46] OSTD[33] IRTPCA[34] LRTSMoG 

Pipeline 1.4412 0.3130 3.2616 0.6171 3.3824 4.5846 

  83.90 372.71 103.57 3372.77 587.16 185.07 



  

Axle 1.6111 3.6814 3.2972 3.2119 -0.1589 7.1895 

  40.79 324.73 58.62 714.27 106.46 40.95 

Weld 4.4648 4.1600 2.7747 2.6052 3.5923 8.0774 

 Joint 12.24 195.66 38.61 260.71 36.92 17.84 

Irregular 2.6001 4.9892 6.0266 3.6731 10.9807 14.3127 

 Shape 67.51 457.38 128.28 1482.95 939.96 120.03 

Artificial 1.0564 -0.3937 1.4284 1.1623 0.0173 2.7512 

 Crack 93.59 664.05 215.60 1074.87 424.76 114.64 

Average 2.0875 2.6755 3.4018 2.4141 3.3077 7.5195 
 

59.91 414.27 110.74 1271.25 412.01 90.97 

 

Table. V. Comparative results based on average F-score with average Precision and average Recall 

Specimen 

Type 

 PCA[44] TSR[45] FFT[46] OSTD[33] IRTPCA[34] LRTSMoG 

Pipeline Precision(%) 49.99 49.99 49.99 100 100 100 

  Recall(%) 75 75 75 100 100 100 

 F-score(%) 60 60 60 100 100 100 

Axle Precision(%) 67.08 64.58 75 75 62.50 91.66 

  Recall(%) 83.33 66.66 58.33 66.66 33.33 91.66 

 F-score(%) 73.51 64.76 65 70 33.92 91.66 

Weld Precision(%) 87.50 63.33 66.66 50 25 87.50 

 Joint Recall(%) 100 100 66.66 33 50 100 

 F-score(%) 92.85 77.5 66.66 50 33.33 92.85 

Irregular Precision(%) 50 66.66 83.33 100 100 100 

 Shape Recall(%) 100 100 100 100 100 100 

 F-score(%) 66.66 77.77 88.88 100 100 100 

Artificial  Precision(%) 83.33 70 53.33 55.55 56.66 84.72 

 Crack Recall(%) 64.28 64.28 73.80 61.90 50 100 

 F-score(%) 61.10 61.10 71.99 57.43 49.67 91.11 

V. CONCLUSION 

In this paper, a joint low-rank sparse MoG based tensor 

decomposition algorithm is proposed. The algorithm is evaluated for 

natural crack defects on a variety of specimen with irregular shape 

using inductive thermography. By optimizing the low rank and sparse 

data in the tri-decomposition framework assuming the noise follows a 

MoG distribution has boosted the computational speed, resulted in 

higher accuracy in estimating the complex noise and detecting weaker 

information defects hidden in the background. The quantitative results 

based on SNR and visual results have shown that the proposed model 

performs well in modelling complex noise and quantifying weaker 

natural crack defects present on the irregular shape specimen. The 

comparative analysis with tensor based decomposition algorithms 

proves the efficacy of the proposed model.  
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